ﻻ يوجد ملخص باللغة العربية
Starting from the one-way group action framework of Brassard and Yung (Crypto 90), we revisit building cryptography based on group actions. Several previous candidates for one-way group actions no longer stand, due to progress both on classical algorithms (e.g., graph isomorphism) and quantum algorithms (e.g., discrete logarithm). We propose the general linear group action on tensors as a new candidate to build cryptography based on group actions. Recent works (Futorny--Grochow--Sergeichuk, Lin. Alg. Appl., 2019) suggest that the underlying algorithmic problem, the tensor isomorphism problem, is the hardest one among several isomorphism testing problems arising from areas including coding theory, computational group theory, and multivariate cryptography. We present evidence to justify the viability of this proposal from comprehensive study of the state-of-art heuristic algorithms, theoretical algorithms, and hardness results, as well as quantum algorithms. We then introduce a new notion called pseudorandom group actions to further develop group-action based cryptography. Briefly speaking, given a group $G$ acting on a set $S$, we assume that it is hard to distinguish two distributions of $(s, t)$ either uniformly chosen from $Stimes S$, or where $s$ is randomly chosen from $S$ and $t$ is the result of applying a random group action of $gin G$ on $s$. This subsumes the classical decisional Diffie-Hellman assumption when specialized to a particular group action. We carefully analyze various attack strategies that support the general linear group action on tensors as a candidate for this assumption. Finally, we establish the quantum security of several cryptographic primitives based on the one-way group action assumption and the pseudorandom group action assumption.
We prove that Kilians four-message succinct argument system is post-quantum secure in the standard model when instantiated with any probabilistically checkable proof and any collapsing hash function (which in turn exist based on the post-quantum hard
We investigate the existence of constant-round post-quantum black-box zero-knowledge protocols for $mathbf{NP}$. As a main result, we show that there is no constant-round post-quantum black-box zero-knowledge argument for $mathbf{NP}$ unless $mathbf{
In this work, we study a generalization of hidden subspace states to hidden coset states (first introduced by Aaronson and Christiano [STOC 12]). This notion was considered independently by Vidick and Zhang [Eurocrypt 21], in the context of proofs of
Owing to some special characteristics and features, blockchain is a very useful technique that can securely organize diverse devices in a smart city. It finds wide applications, especially in distributed environments, where entities such as wireless
We propose a general method for studying properties of quantum channels acting on an n-partite system, whose action is invariant under permutations of the subsystems. Our main result is that, in order to prove that a certain property holds for any ar