ﻻ يوجد ملخص باللغة العربية
We propose a general method for studying properties of quantum channels acting on an n-partite system, whose action is invariant under permutations of the subsystems. Our main result is that, in order to prove that a certain property holds for any arbitrary input, it is sufficient to consider the special case where the input is a particular de Finetti-type state, i.e., a state which consists of n identical and independent copies of an (unknown) state on a single subsystem. A similar statement holds for more general channels which are covariant with respect to the action of an arbitrary finite or locally compact group. Our technique can be applied to the analysis of information-theoretic problems. For example, in quantum cryptography, we get a simple proof for the fact that security of a discrete-variable quantum key distribution protocol against collective attacks implies security of the protocol against the most general attacks. The resulting security bounds are tighter than previously known bounds obtained by proofs relying on the exponential de Finetti theorem [Renner, Nature Physics 3,645(2007)].
We consider the distinguishability of Gaussian states from the view point of continuous-variable quantum cryptography using post-selection. Specifically, we use the probability of error to distinguish between two pure coherent (squeezed) states and t
We introduce a definition of the fidelity function for multi-round quantum strategies, which we call the strategy fidelity, that is a generalization of the fidelity function for quantum states. We provide many properties of the strategy fidelity incl
Quantum key distribution (QKD) provides information theoretically secures key exchange requiring authentication of the classic data processing channel via pre-sharing of symmetric private keys. In previous studies, the lattice-based post-quantum digi
According to the quantum de Finetti theorem, if the state of an N-partite system is invariant under permutations of the subsystems then it can be approximated by a state where almost all subsystems are identical copies of each other, provided N is su
We present a scheme to conditionally engineer an optical quantum system via continuous-variable measurements. This scheme yields high-fidelity squeezed single photon and superposition of coherent states, from input single and two photon Fock states r