ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-relativistic symmetries in three space-time dimensions and the Nappi-Witten algebra

83   0   0.0 ( 0 )
 نشر من قبل Patricio Salgado-Rebolledo
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the Extended Bargmann and Newton-Hooke algebras in 2+1 dimensions can be obtained as expansions of the Nappi-Witten algebra. The result can be generalized to obtain two infinite families of non-relativistic symmetries, which include the Maxwellian Exotic Bargmann symmetry, its generalized Newton-Hooke counterpart, and its Hietarinta dual. In each case, the invariant bilinear form on the Nappi-Witten algebra leads to the invariant tensor on the expanded algebra, allowing one to construct the corresponding Chern-Simons gravity theory.



قيم البحث

اقرأ أيضاً

By applying loop quantum gravity techniques to 3D gravity with a positive cosmological constant $Lambda$, we show how the local gauge symmetry of the theory, encoded in the constraint algebra, acquires the quantum group structure of $so_q(4)$, with $ q = exp{(ihbar sqrt{Lambda}/2kappa)}$. By means of an Inonu-Wigner contraction of the quantum group bi-algebra, keeping $kappa$ finite, we obtain the kappa-Poincare algebra of the flat quantum space-time symmetries.
We study Yang-Baxter deformations of the Nappi-Witten model with a prescription invented by Delduc, Magro and Vicedo. The deformations are specified by skew-symmetric classical $r$-matrices satisfying (modified) classical Yang-Baxter equations. We sh ow that the sigma-model metric is invariant under arbitrary deformations (while the coefficient of $B$-field is changed) by utilizing the most general classical $r$-matrix. Furthermore, the coefficient of $B$-field is determined to be the original value from the requirement that the one-loop $beta$-function should vanish. After all, the Nappi-Witten model is the unique conformal theory within the class of the Yang-Baxter deformations preserving the conformal invariance.
67 - A. Iorio , T. Sykora 2001
We study the space-time symmetries and transformation properties of the non-commutative U(1) gauge theory, by using Noether charges. We carry out our analysis by keeping an open view on the possible ways $theta^{mu u}$ could transform. We conclude t hat $theta^{mu u}$ cannot transform under any space-time transformation since the theory is not invariant under the conformal transformations, with the only exception of space-time translations. The same analysis applies to other gauge groups.
117 - T. Trzesniewski 2015
It is possible that relativistic symmetries become deformed in the semiclassical regime of quantum gravity. Mathematically, such deformations lead to the noncommutativity of spacetime geometry and non-vanishing curvature of momentum space. The best s tudied example is given by the $kappa$-Poincare Hopf algebra, associated with $kappa$-Minkowski space. On the other hand, the curved momentum space is a well-known feature of particles coupled to three-dimensional gravity. The purpose of this thesis was to explore some properties and mutual relations of the above two models. In particular, I study extensively the spectral dimension of $kappa$-Minkowski space. I also present an alternative limit of the Chern-Simons theory describing three-dimensional gravity with particles. Then I discuss the spaces of momenta corresponding to conical defects in higher dimensional spacetimes. Finally, I consider the Fock space construction for the quantum theory of particles in three-dimensional gravity.
Firstly, a systematic procedure is derived for obtaining three-dimensional bound-state equations from four-dimensional ones. Unlike ``quasi-potential approaches this procedure does not involve the use of delta-function constraints on the relative fou r-momentum. In the absence of negative-energy states, the kernels of the three-dimensional equations derived by this technique may be represented as sums of time-ordered perturbation theory diagrams. Consequently, such equations have two major advantages over quasi-potential equations: they may easily be written down in any Lorentz frame, and they include the meson-retardation effects present in the original four-dimensional equation. Secondly, a simple four-dimensional equation with the correct one-body limit is obtained by a reorganization of the generalized ladder Bethe-Salpeter kernel. Thirdly, our approach to deriving three-dimensional equations is applied to this four-dimensional equation, thus yielding a retarded interaction for use in the three-dimensional bound-state equation of Wallace and Mandelzweig. The resulting three-dimensional equation has the correct one-body limit and may be systematically improved upon. The quality of the three-dimensional equation, and our general technique for deriving such equations, is then tested by calculating bound-state properties in a scalar field theory using six different bound-state equations. It is found that equations obtained using the method espoused here approximate the wave functions obtained from their parent four-dimensional equations significantly better than the corresponding quasi-potential equations do.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا