ترغب بنشر مسار تعليمي؟ اضغط هنا

On General Lattice Quantization Noise

337   0   0.0 ( 0 )
 نشر من قبل Uri Erez
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of constructing lattices such that their quantization noise approaches a desired distribution is studied. It is shown that asymptotically is the dimension, lattice quantization noise can approach a broad family of distribution functions with independent and identically distributed components.



قيم البحث

اقرأ أيضاً

Upon compressing perceptually relevant signals, conventional quantization generally results in unnatural outcomes at low rates. We propose distribution preserving quantization (DPQ) to solve this problem. DPQ is a new quantization concept that confin es the probability space of the reconstruction to be identical to that of the source. A distinctive feature of DPQ is that it facilitates a seamless transition between signal synthesis and quantization. A theoretical analysis of DPQ leads to a distribution preserving rate-distortion function (DP-RDF), which serves as a lower bound on the rate of any DPQ scheme, under a constraint on distortion. In general situations, the DP-RDF approaches the classic rate-distortion function for the same source and distortion measure, in the limit of an increasing rate. A practical DPQ scheme based on a multivariate transformation is also proposed. This scheme asymptotically achieves the DP-RDF for i.i.d. Gaussian sources and the mean squared error.
The problem of designing optimal quantization rules for sequential detectors is investigated. First, it is shown that this task can be solved within the general framework of active sequential detection. Using this approach, the optimal sequential det ector and the corresponding quantizer are characterized and their properties are briefly discussed. In particular, it is shown that designing optimal quantization rules requires solving a nonconvex optimization problem, which can lead to issues in terms of computational complexity and numerical stability. Motivated by these difficulties, two performance bounds are proposed that are easier to evaluate than the true performance measures and are potentially tighter than the bounds currently available in the literature. The usefulness of the bounds and the properties of the optimal quantization rules are illustrated with two numerical examples.
Consider a channel ${bf Y}={bf X}+ {bf N}$ where ${bf X}$ is an $n$-dimensional random vector, and ${bf N}$ is a Gaussian vector with a covariance matrix ${bf mathsf{K}}_{bf N}$. The object under consideration in this paper is the conditional mean of ${bf X}$ given ${bf Y}={bf y}$, that is ${bf y} to E[{bf X}|{bf Y}={bf y}]$. Several identities in the literature connect $E[{bf X}|{bf Y}={bf y}]$ to other quantities such as the conditional variance, score functions, and higher-order conditional moments. The objective of this paper is to provide a unifying view of these identities. In the first part of the paper, a general derivative identity for the conditional mean is derived. Specifically, for the Markov chain ${bf U} leftrightarrow {bf X} leftrightarrow {bf Y}$, it is shown that the Jacobian of $E[{bf U}|{bf Y}={bf y}]$ is given by ${bf mathsf{K}}_{{bf N}}^{-1} {bf Cov} ( {bf X}, {bf U} | {bf Y}={bf y})$. In the second part of the paper, via various choices of ${bf U}$, the new identity is used to generalize many of the known identities and derive some new ones. First, a simple proof of the Hatsel and Nolte identity for the conditional variance is shown. Second, a simple proof of the recursive identity due to Jaffer is provided. Third, a new connection between the conditional cumulants and the conditional expectation is shown. In particular, it is shown that the $k$-th derivative of $E[X|Y=y]$ is the $(k+1)$-th conditional cumulant. The third part of the paper considers some applications. In a first application, the power series and the compositional inverse of $E[X|Y=y]$ are derived. In a second application, the distribution of the estimator error $(X-E[X|Y])$ is derived. In a third application, we construct consistent estimators (empirical Bayes estimators) of the conditional cumulants from an i.i.d. sequence $Y_1,...,Y_n$.
Prior studies on covert communication with noise uncertainty adopted a worst-case approach from the wardens perspective. That is, the worst-case detection performance of the warden is used to assess covertness, which is overly optimistic. Instead of simply considering the worst limit, in this work, we take the distribution of noise uncertainty into account to evaluate the overall covertness in a statistical sense. Specifically, we define new metrics for measuring the covertness, which are then adopted to analyze the maximum achievable rate for a given covertness requirement under both bounded and unbounded noise uncertainty models.
Imperfect channel state information degrades the performance of multiple-input multiple-output (MIMO) communications; its effect on single-user (SU) and multi-user (MU) MIMO transmissions are quite different. In particular, MU-MIMO suffers from resid ual inter-user interference due to imperfect channel state information while SU-MIMO only suffers from a power loss. This paper compares the throughput loss of both SU and MU MIMO on the downlink due to delay and channel quantization. Accurate closed-form approximations are derived for the achievable rates for both SU and MU MIMO. It is shown that SU-MIMO is relatively robust to delayed and quantized channel information, while MU MIMO with zero-forcing precoding loses spatial multiplexing gain with a fixed delay or fixed codebook size. Based on derived achievable rates, a mode switching algorithm is proposed that switches between SU and MU MIMO modes to improve the spectral efficiency, based on the average signal-to-noise ratio (SNR), the normalized Doppler frequency, and the channel quantization codebook size. The operating regions for SU and MU modes with different delays and codebook sizes are determined, which can be used to select the preferred mode. It is shown that the MU mode is active only when the normalized Doppler frequency is very small and the codebook size is large.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا