ترغب بنشر مسار تعليمي؟ اضغط هنا

Driving with temperature the synthesis of graphene films on Ge(110)

196   0   0.0 ( 0 )
 نشر من قبل Luca Persichetti
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We systematically investigate the chemical vapor deposition growth of graphene on Ge(110) as a function of the deposition temperature close to the Ge melting point. By merging spectroscopic and morphological information, we find that the quality of graphene films depends critically on the growth temperature improving significantly by increasing this temperature in the 910-930 {deg}C range. We correlate the abrupt improvement of the graphene quality to the formation of a quasi-liquid Ge surface occurring in the same temperature range, which determines increased atom diffusivity and sublimation rate. Being observed for diverse Ge orientations, this process is of general relevance for graphene synthesis on Ge.



قيم البحث

اقرأ أيضاً

We have investigated the growth of Pt on Ge(110) using scanning tunneling microscopy and spectroscopy. The deposition of several monolayers of Pt on Ge(110) followed by annealing at 1100 K results in the formation of three-dimensional metallic Pt-Ge nanocrystals. The outermost layer of these crystals exhibits a honeycomb structure. The honeycomb structure is composed of two hexagonal sub-lattices that are displaced vertically by 0.2 {AA} with respect to each other. The nearest-neighbor distance of the atoms in the honeycomb lattice is 2.5${pm}$0.1 {AA}, i.e. very close to the predicted nearest-neighbor distance in germanene (2.4 {AA}). Scanning tunneling spectroscopy reveals that the atomic layer underneath the honeycomb layer is more metallic than the honeycomb layer itself. These observations are in line with a model recently proposed for metal di-(silicides/)germanides: a hexagonal crystal with metal layers separated by semiconductor layers with a honeycomb lattice. Based on our observations we propose that the outermost layer of the Ge2Pt nanocrystal is a germanene layer.
Epitaxial perovskite (110) oriented SrIrO3 (SIO) thin films were grown by pulsed laser deposition on (110) oriented DyScO3 (DSO) substrates with various film thickness t (2 nm < t < 50 nm). All the films were produced with stoichiometric composition, orthorhombic phase, and with high crystallinity. The nearly perfect in-plane lattice matching of DSO with respect to SIO and same symmetry result in a full epitaxial inplane alignment, i.e., the c-axis of DSO and SIO are parallel to each other with only slightly enlarged d110 out-of-plane lattice spacing (+0.38%) due to the small in-plane compressive strain caused by the DSO substrate. Measurements of the magnetoresistance MR were carried out for current flow along the [001] and [1-10] direction of SIO and magnetic field perpendicular to the film plane. MR appears to be distinctly different for both directions. The anisotropy MR001/MR1-10 > 1 increases with decreasing T and is especially pronounced for the thinnest films, which likewise display a hysteretic field dependence below T* ~ 3 K. The coercive field Hc amounts to 2-5 T. Both, T* and Hc are very similar to the magnetic ordering temperature and coercivity of DSO which strongly suggests substrate-induced mechanism as a reason for the anisotropic magnetotransport in the SIO films.
By combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy we reveal the structural and electronic properties of multilayer graphene on Ru(0001). We prove that large ethylene exposure allows to synthesize two distinct ph ases of bilayer graphene with different properties. The first phase has Bernal AB stacking with respect to the first graphene layer, displays weak vertical interaction and electron doping. The long-range ordered moire pattern modulates the crystal potential and induces replicas of the Dirac cone and minigaps. The second phase has AA stacking sequence with respect to the first layer, displays weak structural and electronic modulation and p-doping. The linearly dispersing Dirac state reveals the nearly-freestanding character of this novel second layer phase.
In this paper, a method is presented to create and characterize mechanically robust, free standing, ultrathin, oxide films with controlled, nanometer-scale thickness using Atomic Layer Deposition (ALD) on graphene. Aluminum oxide films were deposited onto suspended graphene membranes using ALD. Subsequent etching of the graphene left pure aluminum oxide films only a few atoms in thickness. A pressurized blister test was used to determine that these ultrathin films have a Youngs modulus of 154 pm 13 GPa. This Youngs modulus is comparable to much thicker alumina ALD films. This behavior indicates that these ultrathin two-dimensional films have excellent mechanical integrity. The films are also impermeable to standard gases suggesting they are pinhole-free. These continuous ultrathin films are expected to enable new applications in fields such as thin film coatings, membranes and flexible electronics.
The sticking probability of cold atomic hydrogen on suspended graphene calculated by Lepetit and Jackson [Phys. Rev. Lett. {bf 107}, 236102 (2011)] does not include the effect of fluctuations from low-frequency vibrations of graphene. These fluctuati ons suppress the sticking probability for low incident energies ($lesssim 15$ meV).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا