ﻻ يوجد ملخص باللغة العربية
By combining angle-resolved photoemission spectroscopy and scanning tunneling microscopy we reveal the structural and electronic properties of multilayer graphene on Ru(0001). We prove that large ethylene exposure allows to synthesize two distinct phases of bilayer graphene with different properties. The first phase has Bernal AB stacking with respect to the first graphene layer, displays weak vertical interaction and electron doping. The long-range ordered moire pattern modulates the crystal potential and induces replicas of the Dirac cone and minigaps. The second phase has AA stacking sequence with respect to the first layer, displays weak structural and electronic modulation and p-doping. The linearly dispersing Dirac state reveals the nearly-freestanding character of this novel second layer phase.
We have performed low temperature scanning tunnelling spectroscopy (STS) measurements on graphene epitaxially grown on Ru(0001). An inelastic feature, related to the excitation of a vibrational breathing mode of the graphene lattice, was found at 360
Graphene, a thinnest material in the world, can form moire structures on different substrates, including graphite, h-BN, or metal surfaces. In such systems the structure of graphene, i. e. its corrugation, as well as its electronic and elastic proper
Large-area bilayer graphene (BG) is grown epitaxially on Ru(0001) surface and characterized by low temperature scanning tunneling microscopy. The lattice of the bottom layer of BG is stretched by 1.2%, while strain is absent from the top layer. The l
Because of its large density-of-states and the 2{pi} Berry phase near its low-energy band-contact points, neutral bilayer graphene (BLG) at zero magnetic field (B) is susceptible to chiral-symmetry breaking, leading to a variety of gapped spontaneous
We present electronic structure calculations of few-layer epitaxial graphene nanoribbons on SiC(0001). Trough an atomistic description of the graphene layers and the substrate within the extended H{u}ckel Theory and real/momentum space projections we