ترغب بنشر مسار تعليمي؟ اضغط هنا

Two-particle transfer processes as a signature of shape phase transition in Zirconium isotopes

77   0   0.0 ( 0 )
 نشر من قبل J. A. Lay
 تاريخ النشر 2019
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore two-particle transfer reactions as a unique probe of the occurence of shape coexistence in shape phase transitions. The (t,p) reactions to the ground state and to excited $0^+$ states are calculated for the isotope chain of even-even Zirconium isotopes starting from stable nuclei up to beyond current experimental limits. Two-particle spectroscopic factors derived from Monte Carlo Shell Model calculations are used, together with the sequential description of the two-particle transfer reaction mechanism. The calculation shows a clear signature for a shape phase transition between $^{98}$Zr and $^{100}$Zr, which displays coexistence of a deformed ground state with an excited spherical $0^+$ state. Furthermore, we show that there is a qualitative difference with respect to the case of a normal shape phase transition that can be discriminated with two-neutron transfer reactions.



قيم البحث

اقرأ أيضاً

The rapid shape change in Zr isotopes near neutron number $N$=60 is identified to be caused by type II shell evolution associated with massive proton excitations to its $0g_{9/2}$ orbit, and is shown to be a quantum phase transition. Monte Carlo shel l-model calculations are carried out for Zr isotopes of $N$=50-70 with many configurations spanned by eight proton orbits and eight neutron orbits. Energy levels and B(E2) values are obtained within a single framework in a good agreement with experiments, depicting various shapes in going from $N$=50 to 70. Novel coexistence of prolate and triaxial shapes is suggested.
The mass region with A~100 and Z~40 is known to experience a sudden onset of deformation. The presence of the subshell closure $Z=40$ makes feasible to create particle-hole excitations at a moderate excitation energy and, therefore, likely intruder s tates could be present in the low-lying spectrum. In other words, shape coexistence is expected to be a key ingredient to understand this mass region. The aim of this work is to describe excitation energies, transition rates, radii, and two-neutron separation energies for the even-even 94-110Zr nuclei and, moreover, to obtain information about wave functions and deformation. The interacting boson model with configuration mixing will be the framework to study the even-even Zr nuclei, considering only two types of configurations: 0particle-0hole and 2p-2h excitations. On one hand, the parameters appearing in the Hamiltonian and in the E2 transition operator are fixed trough a least-squares fit to the whole available experimental information. On the other hand, once the parameters have been fixed, the calculations allow to obtain a complete set of observables for the whole even-even Zr chain of isotopes. Spectra, transition rates, radii, $rho^2(E0)$, and two-neutron separation energies have been calculated and a good agreement with the experimental information has been obtained. Moreover, a detailed study of the wave function has been conducted and mean-field energy surfaces and deformation have been computed too. The importance of shape coexistence has been shown to correctly describe the A~100 mass area for even-even Zr nuclei. This work confirmed the rather spherical nature of the ground state of 94-98Zr and its deformed nature for 100-110Zr isotopes. The sudden onset of deformation in 100Zr is owing to the rapid lowering of a deformed (intruder) configuration which is high-lying in lighter isotopes.
59 - L.T. Imasheva 2017
The ground state multiplet structure for nuclei over the wide range of mass number $A$ was calculated in $delta$-approximation and different mass relations for pairing energy was analysed in this work. Correlation between the calculated multiplet str ucture and experimental data offer a guideline in deciding between mass relations for nucleon pairing.
The shapes of neutron-rich exotic Ni isotopes are studied. Large-scale shell model calculations are performed by advanced Monte Carlo Shell Model (MCSM) for the $pf$-$g_{9/2}$-$d_{5/2}$ model space. Experimental energy levels are reproduced well by a single fixed Hamiltonian. Intrinsic shapes are analyzed for MCSM eigenstates. Intriguing interplays among spherical, oblate, prolate and gamma-unstable shapes are seen including shape fluctuations, $E$(5)-like situation, the magicity of doubly-magic $^{56,68,78}$Ni, and the coexistence of spherical and strongly deformed shapes. Regarding the last point, strong deformation and change of shell structure can take place simultaneously, being driven by the combination of the tensor force and changes of major configurations within the same nucleus.
The search for a first-order phase transition in strongly interacting matter is one of the major objectives in the exploration of the phase diagram of Quantum Chromodynamics (QCD). In the present work we investigate dilepton radiation from the hot an d dense fireballs created in Au-Au collisions at projectile energies of 1-2 $A$GeV for potential signatures of a first-order transition. Toward this end, we employ a hydrodynamic simulation with two different equations of state, with and without a phase transition. The latter is constrained by susceptibilities at vanishing chemical potential from lattice-QCD as well as neutron star properties, while the former is implemented via modification of the mean-fields in the quark phase. We find that the latent heat involved in the first-order transition leads to a substantial increase in the low-mass thermal emission signal, by about a factor of two above the cross-over scenario.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا