ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel shape evolution in exotic Ni isotopes and configuration-dependent shell structure

475   0   0.0 ( 0 )
 نشر من قبل Takaharu Otsuka
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The shapes of neutron-rich exotic Ni isotopes are studied. Large-scale shell model calculations are performed by advanced Monte Carlo Shell Model (MCSM) for the $pf$-$g_{9/2}$-$d_{5/2}$ model space. Experimental energy levels are reproduced well by a single fixed Hamiltonian. Intrinsic shapes are analyzed for MCSM eigenstates. Intriguing interplays among spherical, oblate, prolate and gamma-unstable shapes are seen including shape fluctuations, $E$(5)-like situation, the magicity of doubly-magic $^{56,68,78}$Ni, and the coexistence of spherical and strongly deformed shapes. Regarding the last point, strong deformation and change of shell structure can take place simultaneously, being driven by the combination of the tensor force and changes of major configurations within the same nucleus.



قيم البحث

اقرأ أيضاً

The atomic nucleus is a quantum many-body system whose constituent nucleons (protons and neutrons) are subject to complex nucleon-nucleon interactions that include spin- and isospin-dependent components. For stable nuclei, already several decades ago , emerging seemingly regular patterns in some observables could be described successfully within a shell-model picture that results in particularly stable nuclei at certain magic fillings of the shells with protons and/or neutrons: N,Z = 8, 20, 28, 50, 82, 126. However, in short-lived, so-called exotic nuclei or rare isotopes, characterized by a large N/Z asymmetry and located far away from the valley of beta stability on the nuclear chart, these magic numbers, viewed through observables, were shown to change. These changes in the regime of exotic nuclei offer an unprecedented view at the roles of the various components of the nuclear force when theoretical descriptions are confronted with experimental data on exotic nuclei where certain effects are enhanced. This article reviews the driving forces behind shell evolution from a theoretical point of view and connects this to experimental signatures.
The evolution of the total energy surface and the nuclear shape in the isotopic chain $^{172-194}$Pt are studied in the framework of the interacting boson model, including configuration mixing. The results are compared with a self-consistent Hartree- Fock-Bogoliubov calculation using the Gogny-D1S interaction and a good agreement between both approaches shows up. The evolution of the deformation parameters points towards the presence of two different coexisting configurations in the region 176 $leq$ A $leq$ 186.
We show how shape transitions in the neutron-rich exotic Si and S isotopes occur in terms of shell-model calculations with a newly constructed Hamiltonian based on V_MU interaction. We first compare the calculated spectroscopic-strength distributions for the proton 0d_5/2,3/2 and 1s_1/2 orbitals with results extracted from a 48Ca(e,ep) experiment to show the importance of the tensor-force component of the Hamiltonian. Detailed calculations for the excitation energies, B(E2) and two-neutron separation energies for the Si and S isotopes show excellent agreement with experimental data. The potential energy surface exhibits rapid shape transitions along the isotopic chains towards N=28 that are different for Si and S. We explain the results in terms of an intuitive picture involving a Jahn-Teller-type effect that is sensitive to the tensor-force-driven shell evolution. The closed sub-shell nucleus 42Si is a particularly good example of how the tensor-force-driven Jahn-Teller mechanism leads to a strong oblate rather than spherical shape.
76 - X. Xu , J. H. Liu , C. X. Yuan 2019
We report first precision mass measurements of the $1/2^-$ isomeric and $9/2^+$ ground states of $^{101}$In. The determined isomeric excitation energy continues a smooth trend of odd-$A$ indium isotopes up to the immediate vicinity of $N=50$ magic nu mber. This trend can be confirmed by dedicated shell model calculations only if the neutron configuration mixing is considered. We find that the single particle energies are different for different states of the same isotope. The presented configuration-dependent shell evolution, type II shell evolution, in odd-$A$ nuclei is discussed for the first time. Our results will facilitate future studies of single-particle neutron states.
A novel shape evolution in the Sn isotopes by the state-of-the-art application of the Monte Carlo Shell Model calculations is presented in a unified way for the 100-138Sn isotopes. A large model space consisting of eight single-particle orbits for pr otons and neutrons is taken with the fixed Hamiltonian and effective charges, where protons in the 1g9/2 orbital are fully activated. While the significant increase of the B(E2; 0+1 -> 2+1) value, seen around 110Sn as a function of neutron number (N), has remained a major puzzle over decades, it is explained as a consequence of the shape evolution driven by proton excitations from the 1g9/2 orbital. A second-order quantum phase transition is found around N=66, connecting the phase of such deformed shapes to the spherical pairing phase. The shape and shell evolutions are thus described, covering topics from the Gamow-Teller decay of 100Sn to the enhanced double magicity of 132Sn.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا