ﻻ يوجد ملخص باللغة العربية
In the dictionary learning (or sparse coding) problem, we are given a collection of signals (vectors in $mathbb{R}^d$), and the goal is to find a basis in which the signals have a sparse (approximate) representation. The problem has received a lot of attention in signal processing, learning, and theoretical computer science. The problem is formalized as factorizing a matrix $X (d times n)$ (whose columns are the signals) as $X = AY$, where $A$ has a prescribed number $m$ of columns (typically $m ll n$), and $Y$ has columns that are $k$-sparse (typically $k ll d$). Most of the known theoretical results involve assuming that the columns of the unknown $A$ have certain incoherence properties, and that the coefficient matrix $Y$ has random (or partly random) structure. The goal of our work is to understand what can be said in the absence of such assumptions. Can we still find $A$ and $Y$ such that $X approx AY$? We show that this is possible, if we allow violating the bounds on $m$ and $k$ by appropriate factors that depend on $k$ and the desired approximation. Our results rely on an algorithm for what we call the threshold correlation problem, which turns out to be related to hypercontractive norms of matrices. We also show that our algorithmic ideas apply to a setting in which some of the columns of $X$ are outliers, thus giving similar guarantees even in this challenging setting.
In this paper, we develop a parameter estimation method for factorially parametrized models such as Factorial Gaussian Mixture Model and Factorial Hidden Markov Model. Our contributions are two-fold. First, we show that the emission matrix of the sta
A dynamical neural network consists of a set of interconnected neurons that interact over time continuously. It can exhibit computational properties in the sense that the dynamical systems evolution and/or limit points in the associated state space c
Federated learning (FL) has emerged as a prominent distributed learning paradigm. FL entails some pressing needs for developing novel parameter estimation approaches with theoretical guarantees of convergence, which are also communication efficient,
Machine learning has shown much promise in helping improve the quality of medical, legal, and economic decision-making. In these applications, machine learning models must satisfy two important criteria: (i) they must be causal, since the goal is typ
In over two decades of research, the field of dictionary learning has gathered a large collection of successful applications, and theoretical guarantees for model recovery are known only whenever optimization is carried out in the same model class as