ﻻ يوجد ملخص باللغة العربية
Machine learning has shown much promise in helping improve the quality of medical, legal, and economic decision-making. In these applications, machine learning models must satisfy two important criteria: (i) they must be causal, since the goal is typically to predict individual treatment effects, and (ii) they must be interpretable, so that human decision makers can validate and trust the model predictions. There has recently been much progress along each direction independently, yet the state-of-the-art approaches are fundamentally incompatible. We propose a framework for learning causal interpretable models---from observational data---that can be used to predict individual treatment effects. Our framework can be used with any algorithm for learning interpretable models. Furthermore, we prove an error bound on the treatment effects predicted by our model. Finally, in an experiment on real-world data, we show that the models trained using our framework significantly outperform a number of baselines.
This paper presents a computational framework that generates ensemble predictive mechanics models with uncertainty quantification (UQ). We first develop a causal discovery algorithm to infer causal relations among time-history data measured during ea
In this paper, we present a Bayesian view on model-based reinforcement learning. We use expert knowledge to impose structure on the transition model and present an efficient learning scheme based on variational inference. This scheme is applied to a
In the dictionary learning (or sparse coding) problem, we are given a collection of signals (vectors in $mathbb{R}^d$), and the goal is to find a basis in which the signals have a sparse (approximate) representation. The problem has received a lot of
Federated learning (FL) has emerged as a prominent distributed learning paradigm. FL entails some pressing needs for developing novel parameter estimation approaches with theoretical guarantees of convergence, which are also communication efficient,
We propose a method for learning linear models whose predictive performance is robust to causal interventions on unobserved variables, when noisy proxies of those variables are available. Our approach takes the form of a regularization term that trad