ﻻ يوجد ملخص باللغة العربية
In this work we analyse the constraints imposed by Poincare symmetry on the gravitational form factors appearing in the Lorentz decomposition of the energy-momentum tensor matrix elements for massive states with arbitrary spin. By adopting a distributional approach, we prove for the first time non-perturbatively that the zero momentum transfer limit of the leading two form factors in the decomposition are completely independent of the spin of the states. It turns out that these constraints arise due to the general Poincare transformation and on-shell properties of the states, as opposed to the specific characteristics of the individual Poincare generators themselves. By expressing these leading form factors in terms of generalised parton distributions, we subsequently derive the linear and angular momentum sum rules for states with arbitrary spin.
Relativistic spin states are convention dependent. In this work we prove that the zero momentum-transfer limits of the leading two form factors in the decomposition of the energy-momentum tensor matrix elements are independent of this choice. In part
By adopting a local QFT framework one can derive in a non-perturbative manner the constraints imposed by Poincare symmetry on the form factors appearing in the Lorentz covariant decomposition of the energy-momentum tensor matrix elements. In particul
We calculate and analyse non-local gravitational form factors induced by quantum matter fields in curved two-dimensional space. The calculations are performed for scalars, spinors and massive vectors by means of the covariant heat kernel method up to
We derive analyticity constraints on a nonlinear ghost-free effective theory of a massive spin-2 particle known as pseudo-linear massive gravity, and on a generalized theory of a massive spin-1 particle, both of which provide simple IR completions of
We show that it is impossible to improve the high-energy behavior of the tree-level four-point amplitude of a massive spin-2 particle by including the exchange of any number of scalars and vectors in four spacetime dimensions. This constrains possibl