ترغب بنشر مسار تعليمي؟ اضغط هنا

Poincare constraints on the gravitational form factors for massive states with arbitrary spin

92   0   0.0 ( 0 )
 نشر من قبل Peter Lowdon
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work we analyse the constraints imposed by Poincare symmetry on the gravitational form factors appearing in the Lorentz decomposition of the energy-momentum tensor matrix elements for massive states with arbitrary spin. By adopting a distributional approach, we prove for the first time non-perturbatively that the zero momentum transfer limit of the leading two form factors in the decomposition are completely independent of the spin of the states. It turns out that these constraints arise due to the general Poincare transformation and on-shell properties of the states, as opposed to the specific characteristics of the individual Poincare generators themselves. By expressing these leading form factors in terms of generalised parton distributions, we subsequently derive the linear and angular momentum sum rules for states with arbitrary spin.



قيم البحث

اقرأ أيضاً

103 - Cedric Lorce , Peter Lowdon 2019
Relativistic spin states are convention dependent. In this work we prove that the zero momentum-transfer limits of the leading two form factors in the decomposition of the energy-momentum tensor matrix elements are independent of this choice. In part icular, we demonstrate that these constraints are insensitive to whether the corresponding states are massive or not, and that they arise purely due to the Poincare covariance of the states.
By adopting a local QFT framework one can derive in a non-perturbative manner the constraints imposed by Poincare symmetry on the form factors appearing in the Lorentz covariant decomposition of the energy-momentum tensor matrix elements. In particul ar, this approach enables one to prove that these constraints are in fact independent of the internal properties of the states appearing in the matrix elements. Here we outline the rationale behind this approach, and report on some of the implications of these findings.
We calculate and analyse non-local gravitational form factors induced by quantum matter fields in curved two-dimensional space. The calculations are performed for scalars, spinors and massive vectors by means of the covariant heat kernel method up to the second order in the curvature and confirmed using Feynman diagrams. The analysis of the ultraviolet (UV) limit reveals a generalized running form of the Polyakov action for a nonminimal scalar field and the usual Polyakov action in the conformally invariant cases. In the infrared (IR) we establish the gravitational decoupling theorem, which can be seen directly from the form factors or from the physical beta function for fields of any spin.
We derive analyticity constraints on a nonlinear ghost-free effective theory of a massive spin-2 particle known as pseudo-linear massive gravity, and on a generalized theory of a massive spin-1 particle, both of which provide simple IR completions of Galileon theories. For pseudo-linear massive gravity we find that, unlike dRGT massive gravity, there is no window of parameter space which satisfies the analyticity constraints. For massive vectors which reduce to Galileons in the decoupling limit, we find that no two-derivative actions are compatible with positivity, but that higher derivative actions can be made compatible.
We show that it is impossible to improve the high-energy behavior of the tree-level four-point amplitude of a massive spin-2 particle by including the exchange of any number of scalars and vectors in four spacetime dimensions. This constrains possibl e weakly coupled ultraviolet extensions of massive gravity, ruling out gravitational analogues of the Higgs mechanism based on particles with spins less than two. Any tree-level ultraviolet extension that is Lorentz invariant and unitary must involve additional massive particles with spins greater than or equal to two, as in Kaluza-Klein theories and string theory.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا