ﻻ يوجد ملخص باللغة العربية
We calculate and analyse non-local gravitational form factors induced by quantum matter fields in curved two-dimensional space. The calculations are performed for scalars, spinors and massive vectors by means of the covariant heat kernel method up to the second order in the curvature and confirmed using Feynman diagrams. The analysis of the ultraviolet (UV) limit reveals a generalized running form of the Polyakov action for a nonminimal scalar field and the usual Polyakov action in the conformally invariant cases. In the infrared (IR) we establish the gravitational decoupling theorem, which can be seen directly from the form factors or from the physical beta function for fields of any spin.
In this work we analyse the constraints imposed by Poincare symmetry on the gravitational form factors appearing in the Lorentz decomposition of the energy-momentum tensor matrix elements for massive states with arbitrary spin. By adopting a distribu
Hairy black holes in the gravitational decoupling setup are studied from the perspective of conformal anomalies. Fluctuations of decoupled sources can be computed by measuring the way the trace anomaly-to-holographic Weyl anomaly ratio differs from u
We extend previous calculations of the non-local form factors of semiclassical gravity in $4D$ to include the Einstein-Hilbert term. The quantized fields are massive scalar, fermion and vector fields. The non-local form factor in this case can be see
By adopting a local QFT framework one can derive in a non-perturbative manner the constraints imposed by Poincare symmetry on the form factors appearing in the Lorentz covariant decomposition of the energy-momentum tensor matrix elements. In particul
Relativistic spin states are convention dependent. In this work we prove that the zero momentum-transfer limits of the leading two form factors in the decomposition of the energy-momentum tensor matrix elements are independent of this choice. In part