ترغب بنشر مسار تعليمي؟ اضغط هنا

Hallucinating Optical Flow Features for Video Classification

171   0   0.0 ( 0 )
 نشر من قبل Yongyi Tang
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Appearance and motion are two key components to depict and characterize the video content. Currently, the two-stream models have achieved state-of-the-art performances on video classification. However, extracting motion information, specifically in the form of optical flow features, is extremely computationally expensive, especially for large-scale video classification. In this paper, we propose a motion hallucination network, namely MoNet, to imagine the optical flow features from the appearance features, with no reliance on the optical flow computation. Specifically, MoNet models the temporal relationships of the appearance features and exploits the contextual relationships of the optical flow features with concurrent connections. Extensive experimental results demonstrate that the proposed MoNet can effectively and efficiently hallucinate the optical flow features, which together with the appearance features consistently improve the video classification performances. Moreover, MoNet can help cutting down almost a half of computational and data-storage burdens for the two-stream video classification. Our code is available at: https://github.com/YongyiTang92/MoNet-Features.



قيم البحث

اقرأ أيضاً

This paper introduces the system we developed for the Google Cloud & YouTube-8M Video Understanding Challenge, which can be considered as a multi-label classification problem defined on top of the large scale YouTube-8M Dataset. We employ a large set of techniques to aggregate the provided frame-level feature representations and generate video-level predictions, including several variants of recurrent neural networks (RNN) and generalized VLAD. We also adopt several fusion strategies to explore the complementarity among the models. In terms of the official metric GAP@20 (global average precision at 20), our best fusion model attains 0.84198 on the public 50% of test data and 0.84193 on the private 50% of test data, ranking 4th out of 650 teams worldwide in the competition.
This paper proposes an end-to-end trainable network, SegFlow, for simultaneously predicting pixel-wise object segmentation and optical flow in videos. The proposed SegFlow has two branches where useful information of object segmentation and optical f low is propagated bidirectionally in a unified framework. The segmentation branch is based on a fully convolutional network, which has been proved effective in image segmentation task, and the optical flow branch takes advantage of the FlowNet model. The unified framework is trained iteratively offline to learn a generic notion, and fine-tuned online for specific objects. Extensive experiments on both the video object segmentation and optical flow datasets demonstrate that introducing optical flow improves the performance of segmentation and vice versa, against the state-of-the-art algorithms.
Video super-resolution (SR) aims to generate a sequence of high-resolution (HR) frames with plausible and temporally consistent details from their low-resolution (LR) counterparts. The generation of accurate correspondence plays a significant role in video SR. It is demonstrated by traditional video SR methods that simultaneous SR of both images and optical flows can provide accurate correspondences and better SR results. However, LR optical flows are used in existing deep learning based methods for correspondence generation. In this paper, we propose an end-to-end trainable video SR framework to super-resolve both images and optical flows. Specifically, we first propose an optical flow reconstruction network (OFRnet) to infer HR optical flows in a coarse-to-fine manner. Then, motion compensation is performed according to the HR optical flows. Finally, compensated LR inputs are fed to a super-resolution network (SRnet) to generate the SR results. Extensive experiments demonstrate that HR optical flows provide more accurate correspondences than their LR counterparts and improve both accuracy and consistency performance. Comparative results on the Vid4 and DAVIS-10 datasets show that our framework achieves the state-of-the-art performance.
In this paper, we describe the system for generating textual descriptions of short video clips using recurrent neural networks (RNN), which we used while participating in the Large Scale Movie Description Challenge 2015 in ICCV 2015. Our work builds on static image captioning systems with RNN based language models and extends this framework to videos utilizing both static image features and video-specific features. In addition, we study the usefulness of visual content classifiers as a source of additional information for caption generation. With experimental results we show that utilizing keyframe based features, dense trajectory video features and content classifier outputs together gives better performance than any one of them individually.
Video super-resolution (SR) aims at generating a sequence of high-resolution (HR) frames with plausible and temporally consistent details from their low-resolution (LR) counterparts. The key challenge for video SR lies in the effective exploitation o f temporal dependency between consecutive frames. Existing deep learning based methods commonly estimate optical flows between LR frames to provide temporal dependency. However, the resolution conflict between LR optical flows and HR outputs hinders the recovery of fine details. In this paper, we propose an end-to-end video SR network to super-resolve both optical flows and images. Optical flow SR from LR frames provides accurate temporal dependency and ultimately improves video SR performance. Specifically, we first propose an optical flow reconstruction network (OFRnet) to infer HR optical flows in a coarse-to-fine manner. Then, motion compensation is performed using HR optical flows to encode temporal dependency. Finally, compensated LR inputs are fed to a super-resolution network (SRnet) to generate SR results. Extensive experiments have been conducted to demonstrate the effectiveness of HR optical flows for SR performance improvement. Comparative results on the Vid4 and DAVIS-10 datasets show that our network achieves the state-of-the-art performance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا