ﻻ يوجد ملخص باللغة العربية
We identify a new notion of pseudorandomness for randomness sources, which we call the average bias. Given a distribution $Z$ over ${0,1}^n$, its average bias is: $b_{text{av}}(Z) =2^{-n} sum_{c in {0,1}^n} |mathbb{E}_{z sim Z}(-1)^{langle c, zrangle}|$. A source with average bias at most $2^{-k}$ has min-entropy at least $k$, and so low average bias is a stronger condition than high min-entropy. We observe that the inner product function is an extractor for any source with average bias less than $2^{-n/2}$. The notion of average bias especially makes sense for polynomial sources, i.e., distributions sampled by low-degree $n$-variate polynomials over $mathbb{F}_2$. For the well-studied case of affine sources, it is easy to see that min-entropy $k$ is exactly equivalent to average bias of $2^{-k}$. We show that for quadratic sources, min-entropy $k$ implies that the average bias is at most $2^{-Omega(sqrt{k})}$. We use this relation to design dispersers for separable quadratic sources with a min-entropy guarantee.
We prove that every distributional problem solvable in polynomial time on the average with respect to the uniform distribution has a frequently self-knowingly correct polynomial-time algorithm. We also study some features of probability weight of cor
In analogy with the regularity lemma of Szemeredi, regularity lemmas for polynomials shown by Green and Tao (Contrib. Discrete Math. 2009) and by Kaufman and Lovett (FOCS 2008) modify a given collection of polynomials calF = {P_1,...,P_m} to a new co
Many papers in the field of integer linear programming (ILP, for short) are devoted to problems of the type $max{c^top x colon A x = b,, x in mathbb{Z}^n_{geq 0}}$, where all the entries of $A,b,c$ are integer, parameterized by the number of rows of
The first-fit coloring is a heuristic that assigns to each vertex, arriving in a specified order $sigma$, the smallest available color. The problem Grundy Coloring asks how many colors are needed for the most adversarial vertex ordering $sigma$, i.e.
Given a clique-width $k$-expression of a graph $G$, we provide $2^{O(k)}cdot n$ time algorithms for connectivity constraints on locally checkable properties such as Node-Weighted Steiner Tree, Connected Dominating Set, or Connected Vertex Cover. We a