ﻻ يوجد ملخص باللغة العربية
We calculate the fermionic spectral function $A_k (omega)$ in the spiral spin-density-wave (SDW) state of the Hubbard model on a quasi-2D triangular lattice at small but finite temperature $T$. The spiral SDW order $Delta (T)$ develops below $T = T_N$ and has momentum ${ bf K} = (4pi/3,0)$. We pay special attention to fermions with momenta ${bf k}$, for which ${bf k}$ and ${bf k} + {bf K}$ are close to Fermi surface in the absence of SDW. At the mean field level, $A_k (omega)$ for such fermions has peaks at $omega = pm Delta (T)$ at $T < T_N$ and displays a conventional Fermi liquid behavior at $T > T_N$. We show that this behavior changes qualitatively beyond mean-field due to singular self-energy contributions from thermal fluctuations in a quasi-2D system. We use a non-perturbative eikonal approach and sum up infinite series of thermal self-energy terms. We show that $A_k (omega)$ shows peak/dip/hump features at $T < T_N$, with the peak position at $Delta (T)$ and hump position at $Delta (T=0)$. Above $T_N$, the hump survives up to $T = T_p > T_N$, and in between $T_N$ and $T_p$ the spectral function displays the pseudogap behavior. We show that the difference between $T_p$ and $T_N$ is controlled by the ratio of in-plane and out-of-plane static spin susceptibilities, which determines the combinatoric factors in the diagrammatic series for the self-energy. For certain values of this ratio, $T_p = T_N$, i.e., the pseudogap region collapses. In this last case, thermal fluctuations are logarithmically singular, yet they do not give rise to pseudogap behavior. Our computational method can be used to study pseudogap physics due to thermal fluctuations in other systems.
The temporal magnetic correlations of the triangular lattice antiferromagnet NiGa$_2$S$_4$ are examined through thirteen decades ($10^{-13}-1$~sec) using ultra-high-resolution inelastic neutron scattering, muon spin relaxation, AC and nonlinear susce
We study the ground state properties of the Hubbard model on three-leg triangular cylinders using large-scale density-matrix renormalization group simulations. At half-filling, we identify an intermediate gapless spin liquid phase between a metallic
Ring-exchange interactions have been proposed as a possible mechanism for a Bose-liquid phase at zero temperature, a phase that is compressible with no superfluidity. Using the Stochastic Green Function algorithm (SGF), we study the effect of these i
We study the effects of quantum fluctuations on the dynamical generation of a gap and on the evolution of the spin-wave spectra of a frustrated magnet on a triangular lattice with bond-dependent Ising couplings, analog of the Kitaev honeycomb model.
In our previous work [arXiv:1803.00999, Phys. Rev. Lett. 121, 046401 (2018)], we found a quantum spin liquid phase with a spinon Fermi surface in the two dimensional spin-1/2 Heisenberg model with four-spin ring exchange on a triangular lattice. In t