ﻻ يوجد ملخص باللغة العربية
Ring-exchange interactions have been proposed as a possible mechanism for a Bose-liquid phase at zero temperature, a phase that is compressible with no superfluidity. Using the Stochastic Green Function algorithm (SGF), we study the effect of these interactions for bosons on a two-dimensional triangular lattice. We show that the supersolid phase, that is known to exist in the ground state for a wide range of densities, is rapidly destroyed as the ring-exchange interactions are turned on. We establish the ground-state phase diagram of the system, which is characterized by the absence of the expected Bose-liquid phase.
In our previous work [arXiv:1803.00999, Phys. Rev. Lett. 121, 046401 (2018)], we found a quantum spin liquid phase with a spinon Fermi surface in the two dimensional spin-1/2 Heisenberg model with four-spin ring exchange on a triangular lattice. In t
We have used exact numerical diagonalization to study the excitation spectrum and the dynamic spin correlations in the $s=1/2$ next-next-nearest neighbor Heisenberg antiferromagnet on the square lattice, with additional 4-spin ring exchange from high
We show that soft core bosons in two dimensions with a ring exchange term exhibit a tendency for phase separation. This observation suggests that the thermodynamic stability of normal bose liquid phases driven by ring exchange should be carefully examined.
High order ring-exchange interactions are crucial for the study of quantum fluctuations on highly frustrated systems. We present the first exact quantum Monte Carlo study of a model of hard-core bosons with sixth order ring-exchange interactions on a
We investigate the evolution of the Mott insulators in the triangular lattice Hubbard Model, as a function of hole doping $delta$ in both the strong and intermediate coupling limit. Using the density matrix renormalization group (DMRG) method, at lig