ﻻ يوجد ملخص باللغة العربية
Multi-orbital superconductors combine unconventional pairing with complex band structures, where different orbitals in the bands contribute to a multitude of superconducting gaps. We here demonstrate a fresh approach using low-temperature scanning tunneling microscopy (LT-STM) to resolve the contributions of different orbitals to superconductivity. This approach is based on STMs capability to resolve the local density of states (LDOS) with a combined high energy and sub unit-cell resolution. This technique directly determines the orbitals on defect free crystals without the need for scatters on the surface and sophisticated quasi-particle interference (QPI) measurements. Taking bulk FeSe as an example, we directly resolve the superconducting gaps within the units cell using a 30 mK STM. In combination with density functional theory calculations, we are able to identify the orbital character of each gap.
We provide a band structure with low-energy properties consistent with recent photoemission and quantum oscillations measurements on FeSe, assuming mean-field like s and/or d-wave orbital ordering at the structural transition. We show how the resulti
Despite many ARPES investigations of iron pnictides, the structure of the electron pockets is still poorly understood. By combining ARPES measurements in different experimental configurations, we clearly resolve their elliptic shape. Comparison with
The cuprates and iron-based high-temperature superconductors share many common features: layered strongly anisotropic crystal structure, strong electronic correlations, interplay between different types of electronic ordering, the intrinsic spatial i
One of central issues in iron-based superconductors is the role of structural change to the superconducting transition temperature (T_c). It was found in FeSe that the lattice strain leads to a drastic increase in T_c, accompanied by suppression of n
The recent discovery of superconductivity with relatively high transition temperature Tc in the layered iron-based quaternary oxypnictides La[ O1-xFx] FeAs was a real surprise. The excitement generated can be seen by the number of subsequent works pu