ﻻ يوجد ملخص باللغة العربية
The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semi-classical explanation of the effect exists, modern electronic structure methods have not yet been applied to modelling the phenomenon. In this paper we investigate its microscopic origins by means of a non-collinear tight-binding model of an $textrm{O}_2$ dimer, which includes the effects of spin-orbit coupling, coupling to an external magnetic field, and vector Stoner exchange. By varying an external magnetic field in the presence of spin-orbit coupling, a torque can be generated on the dimer, validating the presence of the EdH effect. Avoided energy level crossings and the rate of change of magnetic field determine the evolution of the spin. We find also that the torque exerted on the nuclei by the electrons in a time-varying $B$ field is not only due to the EdH effect. Other contributions arise from field-induced changes in the electronic orbital angular momentum and from the direct action of the Faraday electric field associated with the time-varying magnetic field.
We predict the existence of Einstein-de Haas effect in topological magnon insulators. Temperature variation of angular momentum in the topological state shows a sign change behavior, akin to the low temperature thermal Hall conductance response. This
In 1915, Einstein and de Haas and Barnett demonstrated that changing the magnetization of a magnetic material results in mechanical rotation, and vice versa. At the microscopic level, this effect governs the transfer between electron spin and orbital
We propose a nanoscale rotor embedded between two ferromagnetic electrodes that is driven by spin injection. The spin-rotation coupling allows this nanorotor to continuously receive angular momentum from an injected spin under steady current flow bet
The original observation of the Einstein-de Haas effect was a landmark experiment in the early history of modern physics that illustrates the relationship between magnetism and angular momentum. Today the effect is still discussed in elementary physi
Emergent Lorentz symmetry and chiral anomaly are well known to play an essential role in anomalous transport phenomena of Weyl metals. In particular, the former causes a Berry-curvature induced orbital magnetic moment to modify the group velocity of