ﻻ يوجد ملخص باللغة العربية
The original observation of the Einstein-de Haas effect was a landmark experiment in the early history of modern physics that illustrates the relationship between magnetism and angular momentum. Today the effect is still discussed in elementary physics courses to demonstrate that the angular momentum associated with the aligned electron spins in a ferromagnet can be converted to mechanical angular momentum by reversing the direction of magnetisation using an external magnetic field. In recent times, a related problem in magnetism concerns the time-scale over which this angular momentum transfer can occur. It is known experimentally for several metallic ferromagnets that intense photoexcitation leads to a drop in the magnetisation on a time scale shorter than 100 fs, a phenomenon called ultrafast demagnetisation. The microscopic mechanism for this process has been hotly debated, with one key question still unanswered: where does the angular momentum go on these sub-picosecond time scales? Here we show using femtosecond time-resolved x-ray diffraction that a large fraction of the angular momentum lost from the spin system on the laserinduced demagnetisation of ferromagnetic iron is transferred to the lattice on sub-picosecond timescales, manifesting as a transverse strain wave that propagates from the surface into the bulk. By fitting a simple model of the x-ray data to simulations and optical data, we roughly estimate that the angular momentum occurs on a time scale of 200 fs and corresponds to 80% of the angular momentum lost from the spin system. Our results show that interaction with the lattice plays an essential role in the process of ultrafast demagnetisation in this system.
We predict the existence of Einstein-de Haas effect in topological magnon insulators. Temperature variation of angular momentum in the topological state shows a sign change behavior, akin to the low temperature thermal Hall conductance response. This
The Einstein-de Haas (EdH) effect, where the spin angular momentum of electrons is transferred to the mechanical angular momentum of atoms, was established experimentally in 1915. While a semi-classical explanation of the effect exists, modern electr
We propose a nanoscale rotor embedded between two ferromagnetic electrodes that is driven by spin injection. The spin-rotation coupling allows this nanorotor to continuously receive angular momentum from an injected spin under steady current flow bet
In 1915, Einstein and de Haas and Barnett demonstrated that changing the magnetization of a magnetic material results in mechanical rotation, and vice versa. At the microscopic level, this effect governs the transfer between electron spin and orbital
Shubnikov de Haas oscillations for two well defined frequencies, corresponding respectively to areas of 0.8 and 1.36% of the first Brillouin zone (FBZ), were observed in single crystals of Na$_{0.3}$CoO$_2$. The existence of Na superstructures in Na$