ﻻ يوجد ملخص باللغة العربية
We examine a special case of an approximation of the joint spectral radius given by Blondel and Nesterov, which we call the outer spectral radius. The outer spectral radius is given by the square root of the ordinary spectral radius of the $n^2$ by $n^2$ matrix $sum{overline{X_i}}otimes{X_i}.$ We give an analogue of the spectral radius formula for the outer spectral radius which can be used to quickly obtain the error bounds in methods based on the work of Blondel and Nesterov. The outer spectral radius is used to analyze the iterates of a completely postive map, including the special case of quantum channels. The average of the iterates of a completely positive map approach to a completely positive map where the Kraus operators span an ideal in the algebra generated by the Kraus operators of the original completely positive map. We also give an elementary treatment of Popescus theorems on similarity to row contractions in the matrix case, describe connections to the Parrilo-Jadbabaie relaxation, and give a detailed analysis of the maximal spectrum of a completely positive map.
We initiate the study of the completely bounded multipliers of the Haagerup tensor product $A(G)otimes_{rm h} A(G)$ of two copies of the Fourier algebra $A(G)$ of a locally compact group $G$. If $E$ is a closed subset of $G$ we let $E^{sharp} = {(s,t
For a tuple $A= (A_0, A_1, ldots , A_n)$ of elements in a unital Banach algebra $mathcal{B}$, its textit{projective (joint) spectrum} $p(A)$ is the collection of $zinmathbb{P}^{n}$ such that $A(z)=z_0A_0+z_1 A_1 + ldots z_n A_n$ is not invertible. If
We investigate the evolution of open quantum systems in the presence of initial correlations with an environment. Here the standard formalism of describing evolution by completely positive trace preserving (CPTP) quantum operations can fail and non-c
D. Bures had defined a metric on the set of normal states on a von Neumann algebra using GNS representations of states. This notion has been extended to completely positive maps between $C^*$-algebras by D. Kretschmann, D. Schlingemann and R. F. Wern
Let $sigma(A)$, $rho(A)$ and $r(A)$ denote the spectrum, spectral radius and numerical radius of a bounded linear operator $A$ on a Hilbert space $H$, respectively. We show that a linear operator $A$ satisfying $$rho(AB)le r(A)r(B) quadtext{ for all