ﻻ يوجد ملخص باللغة العربية
The Photon Transfer Curve (PTC) of a CCD depicts the variance of uniform images as a function of their average. It is now well established that the variance is not proportional to the average, as Poisson statistics would indicate, but rather flattens out at high flux. This variance deficit, related to the brighter-fatter effect, feeds correlations between nearby pixels, that increase with flux, and decay with distance. We propose an analytical expression for the PTC shape, and for the dependence of correlations with intensity, and relate both to some more basic quantities related to the electrostatics of the sensor, that are commonly used to correct science images for the brighter-fatter effect. We derive electrostatic constraints from a large set of flat field images acquired with a CCD e2v 250, and eventually question the generally-admitted assumption that boundaries of CCD pixels shift by amounts proportional to the source charges. Our results show that the departure of flat field statistics from Poisson law is entirely compatible with charge redistribution during the drift in the sensor.
CCD sensors do not deliver a perfect image of the light they receive. Beyond the well known linear image smearing due to diffusion of charges during their drift towards the pixel wells, non-linear effects are at play in these sensors. We now have amp
Image smear, produced by the shutter-less operation of frame transfer CCD detectors, can be detrimental for many imaging applications. Existing algorithms used to numerically remove smear, do not contemplate cases where intensity levels change consid
We present experimental studies on the charge transfer inefficiency (CTI) of charge-coupled device (CCD) developed for the soft X-ray imaging telescope, Xtend, aboard the XRISM satellite. The CCD is equipped with a charge injection (CI) capability, i
We report the radiation hardness of a p-channel CCD developed for the X-ray CCD camera onboard the XRISM satellite. This CCD has basically the same characteristics as the one used in the previous Hitomi satellite, but newly employs a notch structure
Modern precise radial velocity spectrometers are designed to infer the existence of planets orbiting other stars by measuring few-nm shifts in the positions of stellar spectral lines recorded at high spectral resolution on a large-area digital detect