ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental studies on the charge transfer inefficiency of CCD developed for the soft X-ray imaging telescope Xtend aboard the XRISM satellite

82   0   0.0 ( 0 )
 نشر من قبل Yoshiaki Kanemaru
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present experimental studies on the charge transfer inefficiency (CTI) of charge-coupled device (CCD) developed for the soft X-ray imaging telescope, Xtend, aboard the XRISM satellite. The CCD is equipped with a charge injection (CI) capability, in which sacrificial charge is periodically injected to fill the charge traps. By evaluating the re-emission of the trapped charge observed behind the CI rows, we find that there are at least three trap populations with different time constants. The traps with the shortest time constant, which is equivalent to a transfer time of approximately one pixel, are mainly responsible for the trailing charge of an X-ray event seen in the following pixel. A comparison of the trailing charge in two clocking modes reveals that the CTI depends not only on the transfer time but also on the area, namely the imaging or storage area. We construct a new CTI model with taking into account with both transfer-time and area dependence. This model reproduces the data obtained in both clocking modes consistently. We also examine apparent flux dependence of the CTI observed without the CI technique. The higher incident X-ray flux is, the lower the CTI value becomes. It is due to a sacrificial charge effect by another X-ray photon. This effect is found to be negligible when the CI technique is used.



قيم البحث

اقرأ أيضاً

We report the radiation hardness of a p-channel CCD developed for the X-ray CCD camera onboard the XRISM satellite. This CCD has basically the same characteristics as the one used in the previous Hitomi satellite, but newly employs a notch structure of potential for signal charges by increasing the implant concentration in the channel. The new device was exposed up to approximately $7.9 times 10^{10} mathrm{~protons~cm^{-2}}$ at 100 MeV. The charge transfer inefficiency was estimated as a function of proton fluence with an ${}^{55} mathrm{Fe}$ source. A device without the notch structure was also examined for comparison. The result shows that the notch device has a significantly higher radiation hardness than those without the notch structure including the device adopted for Hitomi. This proves that the new CCD is radiation tolerant for space applications with a sufficient margin.
We have been developing P-channel Charge-Coupled Devices (CCDs) for the upcoming X-ray Astronomy Satellite XRISM, planned to be launched in 2021. While the basic design of the CCD camera (Soft X-ray Imager: SXI) is almost the same as that of the lost Hitomi (ASTRO-H) observatory, we are planning to reduce the light leakages that is one of the largest problems recognized in Hitomi data. We adopted a double-layer optical blocking layer on the XRISM CCDs and also added an extra aluminum layer on the backside of them. We develop a newly designed test sample CCD and irradiate it with optical light to evaluate the optical blocking performance. As a result, light leakages are effectively reduced compared with that of the Hitomi CCDs. We thus conclude that the issue is solved by the new design and that the XRISM CCDs satisfy the mission requirement for the SXI.
textit{Resolve} onboard the X-ray satellite XRISM is a cryogenic instrument with an X-ray microcalorimeter in a Dewar. A lid partially transparent to X-rays (called gate valve, or GV) is installed at the top of the Dewar along the optical axis. Becau se observations will be made through the GV for the first few months, the X-ray transmission calibration of the GV is crucial for initial scientific outcomes. We present the results of our ground calibration campaign of the GV, which is composed of a Be window and a stainless steel mesh. For the stainless steel mesh, we measured its transmission using the X-ray beamline at ISAS. For the Be window, we used synchrotron facilities to measure the transmission and modeled the data with (i) photoelectric absorption and incoherent scattering of Be, (ii) photoelectric absorption of contaminants, and (iii) coherent scattering of Be changing at specific energies. We discuss the physical interpretation of the transmission discontinuity caused by the Bragg diffraction in poly-crystal Be, which we incorporated into our transmission phenomenological model. We present the X-ray diffraction measurement on the sample to support our interpretation. The measurements and the constructed model meet the calibration requirements of the GV. We also performed a spectral fitting of the Crab nebula observed with Hitomi SXS and confirmed improvements of the model parameters.
We describe the in-orbit performance of the soft X-ray imaging system consisting of the Soft X-ray Telescope and the Soft X-ray Imager aboard Hitomi. Verification and calibration of imaging and spectroscopic performance are carried out making the bes t use of the limited data of less than three weeks. Basic performance including a large field of view of 38x38 is verified with the first light image of the Perseus cluster of galaxies. Amongst the small number of observed targets, the on-minus-off pulse image for the out-of-time events of the Crab pulsar enables us to measure a half power diameter of the telescope as about 1.3. The average energy resolution measured with the onboard calibration source events at 5.89 keV is 179 pm 3 eV in full width at half maximum. Light leak and cross talk issues affected the effective exposure time and the effective area, respectively, because all the observations were performed before optimizing an observation schedule and parameters for the dark level calculation. Screening the data affected by these two issues, we measure the background level to be 5.6x10^{-6} counts s^{-1} arcmin^{-2} cm^{-2} in the energy band of 5-12 keV, which is seven times lower than that of the Suzaku XIS-BI.
157 - Richard Massey 2014
Charge-Coupled Device (CCD) detectors, widely used to obtain digital imaging, can be damaged by high energy radiation. Degraded images appear blurred, because of an effect known as Charge Transfer Inefficiency (CTI), which trails bright objects as th e image is read out. It is often possible to correct most of the trailing during post-processing, by moving flux back to where it belongs. We compare several popular algorithms for this: quantifying the effect of their physical assumptions and tradeoffs between speed and accuracy. We combine their best elements to construct a more accurate model of damaged CCDs in the Hubble Space Telescopes Advanced Camera for Surveys/Wide Field Channel, and update it using data up to early 2013. Our algorithm now corrects 98% of CTI trailing in science exposures, a substantial improvement over previous work. Further progress will be fundamentally limited by the presence of read noise. Read noise is added after charge transfer so does not get trailed - but it is incorrectly untrailed during post-processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا