ترغب بنشر مسار تعليمي؟ اضغط هنا

Independent Vector Analysis with more Microphones than Sources

48   0   0.0 ( 0 )
 نشر من قبل Robin Scheibler
 تاريخ النشر 2019
والبحث باللغة English




اسأل ChatGPT حول البحث

We extend frequency-domain blind source separation based on independent vector analysis to the case where there are more microphones than sources. The signal is modelled as non-Gaussian sources in a Gaussian background. The proposed algorithm is based on a parametrization of the demixing matrix decreasing the number of parameters to estimate. Furthermore, orthogonal constraints between the signal and background subspaces are imposed to regularize the separation. The problem can then be posed as a constrained likelihood maximization. We propose efficient alternating updates guaranteed to converge to a stationary point of the cost function. The performance of the algorithm is assessed on simulated signals. We find that the separation performance is on par with that of the conventional determined algorithm at a fraction of the computational cost.



قيم البحث

اقرأ أيضاً

We propose a blind source separation algorithm that jointly exploits measurements by a conventional microphone array and an ad hoc array of low-rate sound power sensors called blinkies. While providing less information than microphones, blinkies circ umvent some difficulties of microphone arrays in terms of manufacturing, synchronization, and deployment. The algorithm is derived from a joint probabilistic model of the microphone and sound power measurements. We assume the separated sources to follow a time-varying spherical Gaussian distribution, and the non-negative power measurement space-time matrix to have a low-rank structure. We show that alternating updates similar to those of independent vector analysis and Itakura-Saito non-negative matrix factorization decrease the negative log-likelihood of the joint distribution. The proposed algorithm is validated via numerical experiments. Its median separation performance is found to be up to 8 dB more than that of independent vector analysis, with significantly reduced variability.
Short-time Fourier transform (STFT) is used as the front end of many popular successful monaural speech separation methods, such as deep clustering (DPCL), permutation invariant training (PIT) and their various variants. Since the frequency component of STFT is linear, while the frequency distribution of human auditory system is nonlinear. In this work we propose and give an empirical study to use an alternative front end called constant Q transform (CQT) instead of STFT to achieve a better simulation of the frequency resolving power of the human auditory system. The upper bound in signal-to-distortion (SDR) of ideal speech separation based on CQTs ideal ration mask (IRM) is higher than that based on STFT. In the same experimental setting on WSJ0-2mix corpus, we examined the performance of CQT under different backends, including the original DPCL, utterance level PIT, and some of their variants. It is found that all CQT-based methods are better than STFT-based methods, and achieved on average 0.4dB better performance than STFT based method in SDR improvements.
Independent deeply learned matrix analysis (IDLMA) is one of the state-of-the-art multichannel audio source separation methods using the source power estimation based on deep neural networks (DNNs). The DNN-based power estimation works well for sound s having timbres similar to the DNN training data. However, the sounds to which IDLMA is applied do not always have such timbres, and the timbral mismatch causes the performance degradation of IDLMA. To tackle this problem, we focus on a blind source separation counterpart of IDLMA, independent low-rank matrix analysis. It uses nonnegative matrix factorization (NMF) as the source model, which can capture source spectral components that only appear in the target mixture, using the low-rank structure of the source spectrogram as a clue. We thus extend the DNN-based source model to encompass the NMF-based source model on the basis of the product-of-expert concept, which we call the product of source models (PoSM). For the proposed PoSM-based IDLMA, we derive a computationally efficient parameter estimation algorithm based on an optimization principle called the majorization-minimization algorithm. Experimental evaluations show the effectiveness of the proposed method.
We address the determined audio source separation problem in the time-frequency domain. In independent deeply learned matrix analysis (IDLMA), it is assumed that the inter-frequency correlation of each source spectrum is zero, which is inappropriate for modeling nonstationary signals such as music signals. To account for the correlation between frequencies, independent positive semidefinite tensor analysis has been proposed. This unsupervised (blind) method, however, severely restrict the structure of frequency covariance matrices (FCMs) to reduce the number of model parameters. As an extension of these conventional approaches, we here propose a supervised method that models FCMs using deep neural networks (DNNs). It is difficult to directly infer FCMs using DNNs. Therefore, we also propose a new FCM model represented as a convex combination of a diagonal FCM and a rank-1 FCM. Our FCM model is flexible enough to not only consider inter-frequency correlation, but also capture the dynamics of time-varying FCMs of nonstationary signals. We infer the proposed FCMs using two DNNs: DNN for power spectrum estimation and DNN for time-domain signal estimation. An experimental result of separating music signals shows that the proposed method provides higher separation performance than IDLMA.
Independent low-rank matrix analysis (ILRMA) is the state-of-the-art algorithm for blind source separation (BSS) in the determined situation (the number of microphones is greater than or equal to that of source signals). ILRMA achieves a great separa tion performance by modeling the power spectrograms of the source signals via the nonnegative matrix factorization (NMF). Such a highly developed source model can solve the permutation problem of the frequency-domain BSS to a large extent, which is the reason for the excellence of ILRMA. In this paper, we further improve the separation performance of ILRMA by additionally considering the general structure of spectrograms, which is called consistency, and hence we call the proposed method Consistent ILRMA. Since a spectrogram is calculated by an overlapping window (and a window function induces spectral smearing called main- and side-lobes), the time-frequency bins depend on each other. In other words, the time-frequency components are related to each other via the uncertainty principle. Such co-occurrence among the spectral components can function as an assistant for solving the permutation problem, which has been demonstrated by a recent study. On the basis of these facts, we propose an algorithm for realizing Consistent ILRMA by slightly modifying the original algorithm. Its performance was extensively evaluated through experiments performed with various window lengths and shift lengths. The results indicated several tendencies of the original and proposed ILRMA that include some topics not fully discussed in the literature. For example, the proposed Consistent ILRMA tends to outperform the original ILRMA when the window length is sufficiently long compared to the reverberation time of the mixing system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا