ﻻ يوجد ملخص باللغة العربية
We propose a blind source separation algorithm that jointly exploits measurements by a conventional microphone array and an ad hoc array of low-rate sound power sensors called blinkies. While providing less information than microphones, blinkies circumvent some difficulties of microphone arrays in terms of manufacturing, synchronization, and deployment. The algorithm is derived from a joint probabilistic model of the microphone and sound power measurements. We assume the separated sources to follow a time-varying spherical Gaussian distribution, and the non-negative power measurement space-time matrix to have a low-rank structure. We show that alternating updates similar to those of independent vector analysis and Itakura-Saito non-negative matrix factorization decrease the negative log-likelihood of the joint distribution. The proposed algorithm is validated via numerical experiments. Its median separation performance is found to be up to 8 dB more than that of independent vector analysis, with significantly reduced variability.
Unsupervised blind source separation methods do not require a training phase and thus cannot suffer from a train-test mismatch, which is a common concern in neural network based source separation. The unsupervised techniques can be categorized in two
Multichannel blind audio source separation aims to recover the latent sources from their multichannel mixtures without supervised information. One state-of-the-art blind audio source separation method, named independent low-rank matrix analysis (ILRM
Independent low-rank matrix analysis (ILRMA) is the state-of-the-art algorithm for blind source separation (BSS) in the determined situation (the number of microphones is greater than or equal to that of source signals). ILRMA achieves a great separa
This paper presents a computationally efficient approach to blind source separation (BSS) of audio signals, applicable even when there are more sources than microphones (i.e., the underdetermined case). When there are as many sources as microphones (
We extend frequency-domain blind source separation based on independent vector analysis to the case where there are more microphones than sources. The signal is modelled as non-Gaussian sources in a Gaussian background. The proposed algorithm is base