ترغب بنشر مسار تعليمي؟ اضغط هنا

Detection of the Quantum Illumination Measurement

97   0   0.0 ( 0 )
 نشر من قبل Michal Krelina
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Michal Krelina




اسأل ChatGPT حول البحث

In this report, we discuss possibilities to detect a signal at the target from the quantum illumination protocol, that could serve as a quantum radar. We assume a simple universal detecting schema on the target and study if it is possible to discover the quantum illumination measurement and in what conditions considering the microwave regime. Assuming many simplifications, we found that the possibility or the advantage of the detection of the quantum illumination measurement strongly depends on the realization of the quantum illumination protocol.



قيم البحث

اقرأ أيضاً

A quantum receiver is an essential element of quantum illumination (QI) which outperforms its classical counterpart, called classical-illumination (CI). However, there are only few proposals for realizable quantum receiver, which exploits nonlinear e ffects leading to increasing the complexity of receiver setups. To compensate this, in this article, we design a quantum receiver with linear optical elements for Gaussian QI. Rather than exploiting nonlinear effect, our receiver consists of a 50:50 beam splitter and homodyne detection. Using double homodyne detection after the 50:50 beam splitter, we analyze the performance of the QI in different regimes of target reflectivity, source power, and noise level. We show that our receiver has better signal-to-noise ratio and more robust against noise than the existing simple-structured receivers.
Microwave squeezing represents the ultimate sensitivity frontier for superconducting qubit measurement. However, observation of enhancement has remained elusive, in part because integration with conventional dispersive readout pollutes the signal cha nnel with antisqueezed vacuum. Here we induce a stroboscopic light-matter coupling with superior squeezing compatibility, and observe an increase in the room-temperature signal-to-noise ratio of 24%. Squeezing the orthogonal phase controls measurement backaction, slowing dephasing by a factor of 1.8. This protocol enables the practical use of microwave squeezing for qubit state measurement.
150 - Ranjith Nair , Mile Gu 2020
In Quantum Illumination (QI), a signal beam initially entangled with an idler beam held at the receiver interrogates a target region bathed in thermal background light. The returned beam is measured jointly with the idler in order to determine whethe r a weakly reflecting target is present. Using tools from quantum information theory, we derive lower bounds on the average error probability of detecting both specular and fading targets and on the mean squared error of estimating the reflectance of a detected target, which are obeyed by any QI transmitter satisfying a signal energy constraint. For bright thermal backgrounds, we show that the QI system using multiple copies of low-brightness two-mode squeezed vacuum states is nearly optimal. More generally, our results place limits on the best possible performance achievable using QI systems at all wavelengths, and at all signal and background noise levels.
Quantum illumination consists in shining quantum light on a target region immersed in a bright thermal bath, with the aim of detecting the presence of a possible low-reflective object. If the signal is entangled with the receiver, then a suitable cho ice of the measurement offers a gain with respect to the optimal classical protocol employing coherent states. Here, we tackle this detection problem by using quantum estimation techniques to measure the reflectivity parameter of the object, showing an enhancement in the signal-to-noise ratio up to 3 dB with respect to the classical case when implementing only local measurements. Our approach employs the quantum Fisher information to provide an upper bound for the error probability, supplies the concrete estimator saturating the bound, and extends the quantum illumination protocol to non-Gaussian states. As an example, we show how Schru007fodingers cat states may be used for quantum illumination.
Quantum illumination (QI) promises unprecedented performances in target detection but there are various problems surrounding its implementation. Where target ranging is a concern, signal and idler recombination forms a crucial barrier to the protocol s success. This could potentially be mitigated if performing a measurement on the idler mode could still yield a quantum advantage. In this paper we investigate the QI protocol for a generically correlated Gaussian source and study the phase-conjugating (PC) receiver, deriving the associated SNR in terms of the signal and idler energies, and their cross-correlations, which may be readily adapted to incorporate added noise due to Gaussian measurements. We confirm that a heterodyne measurement performed on the idler mode leads to a performance which asymptotically approaches that of a coherent state with homodyne detection. However, if the signal mode is affected by heterodyne but the idler mode is maintained clean, the performance asymptotically approaches that of the PC receiver without any added noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا