ﻻ يوجد ملخص باللغة العربية
Microwave squeezing represents the ultimate sensitivity frontier for superconducting qubit measurement. However, observation of enhancement has remained elusive, in part because integration with conventional dispersive readout pollutes the signal channel with antisqueezed vacuum. Here we induce a stroboscopic light-matter coupling with superior squeezing compatibility, and observe an increase in the room-temperature signal-to-noise ratio of 24%. Squeezing the orthogonal phase controls measurement backaction, slowing dephasing by a factor of 1.8. This protocol enables the practical use of microwave squeezing for qubit state measurement.
We propose Gaussian quantum illumination(QI) protocol exploiting asymmetrically squeezed two-mode(ASTM) state that is generated by applying single-mode squeezing operations on each mode of an initial two-mode squeezed vacuum(TMSV) state, in order to
In trapped-ion quantum information processing, interactions between spins (qubits) are mediated by collective modes of motion of an ion crystal. While there are many different experimental strategies to design such interactions, they all face both te
In this report, we discuss possibilities to detect a signal at the target from the quantum illumination protocol, that could serve as a quantum radar. We assume a simple universal detecting schema on the target and study if it is possible to discover
A proposed phase-estimation protocol based on measuring the parity of a two-mode squeezed-vacuum state at the output of a Mach-Zehnder interferometer shows that the Cram{e}r-Rao sensitivity is sub-Heisenberg [Phys. Rev. Lett. {bf104}, 103602 (2010)].
The act of observing a quantum object fundamentally perturbs its state, resulting in a random walk toward an eigenstate of the measurement operator. Ideally, the measurement is responsible for all dephasing of the quantum state. In practice, imperfec