ﻻ يوجد ملخص باللغة العربية
High-dimensional Nearest Neighbor (NN) search is central in multimedia search systems. Product Quantization (PQ) is a widespread NN search technique which has a high performance and good scalability. PQ compresses high-dimensional vectors into compact codes thanks to a combination of quantizers. Large databases can, therefore, be stored entirely in RAM, enabling fast responses to NN queries. In almost all cases, PQ uses 8-bit quantizers as they offer low response times. In this paper, we advocate the use of 16-bit quantizers. Compared to 8-bit quantizers, 16-bit quantizers boost accuracy but they increase response time by a factor of 3 to 10. We propose a novel approach that allows 16-bit quantizers to offer the same response time as 8-bit quantizers, while still providing a boost of accuracy. Our approach builds on two key ideas: (i) the construction of derived codebooks that allow a fast and approximate distance evaluation, and (ii) a two-pass NN search procedure which builds a candidate set using the derived codebooks, and then refines it using 16-bit quantizers. On 1 billion SIFT vectors, with an inverted index, our approach offers a Recall@100 of 0.85 in 5.2 ms. By contrast, 16-bit quantizers alone offer a Recall@100 of 0.85 in 39 ms, and 8-bit quantizers a Recall@100 of 0.82 in 3.8 ms.
Vector quantization-based approaches are successful to solve Approximate Nearest Neighbor (ANN) problems which are critical to many applications. The idea is to generate effective encodings to allow fast distance approximation. We propose quantizatio
Quantization methods have been introduced to perform large scale approximate nearest search tasks. Residual Vector Quantization (RVQ) is one of the effective quantization methods. RVQ uses a multi-stage codebook learning scheme to lower the quantizat
Efficient Nearest Neighbor (NN) search in high-dimensional spaces is a foundation of many multimedia retrieval systems. Because it offers low responses times, Product Quantization (PQ) is a popular solution. PQ compresses high-dimensional vectors int
Embedding into hyperbolic space is emerging as an effective representation technique for datasets that exhibit hierarchical structure. This development motivates the need for algorithms that are able to effectively extract knowledge and insights from
We introduce a novel dictionary optimization method for high-dimensional vector quantization employed in approximate nearest neighbor (ANN) search. Vector quantization methods first seek a series of dictionaries, then approximate each vector by a sum