ﻻ يوجد ملخص باللغة العربية
We introduce a novel dictionary optimization method for high-dimensional vector quantization employed in approximate nearest neighbor (ANN) search. Vector quantization methods first seek a series of dictionaries, then approximate each vector by a sum of elements selected from these dictionaries. An optimal series of dictionaries should be mutually independent, and each dictionary should generate a balanced encoding for the target dataset. Existing methods did not explicitly consider this. To achieve these goals along with minimizing the quantization error (residue), we propose a novel dictionary optimization method called emph{Dictionary Annealing} that alternatively heats up a single dictionary by generating an intermediate dataset with residual vectors, cools down the dictionary by fitting the intermediate dataset, then extracts the new residual vectors for the next iteration. Better codes can be learned by DA for the ANN search tasks. DA is easily implemented on GPU to utilize the latest computing technology, and can easily extended to an online dictionary learning scheme. We show by experiments that our optimized dictionaries substantially reduce the overall quantization error. Jointly used with residual vector quantization, our optimized dictionaries lead to a better approximate nearest neighbor search performance compared to the state-of-the-art methods.
We propose a generic feature compression method for Approximate Nearest Neighbor Search (ANNS) problems, which speeds up existing ANNS methods in a plug-and-play manner. Specifically, we propose a new network structure called Compression Network with
Vector quantization-based approaches are successful to solve Approximate Nearest Neighbor (ANN) problems which are critical to many applications. The idea is to generate effective encodings to allow fast distance approximation. We propose quantizatio
Quantization methods have been introduced to perform large scale approximate nearest search tasks. Residual Vector Quantization (RVQ) is one of the effective quantization methods. RVQ uses a multi-stage codebook learning scheme to lower the quantizat
Efficient Nearest Neighbor (NN) search in high-dimensional spaces is a foundation of many multimedia retrieval systems. Because it offers low responses times, Product Quantization (PQ) is a popular solution. PQ compresses high-dimensional vectors int
We consider the problem of recovering clustered sparse signals with no prior knowledge of the sparsity pattern. Beyond simple sparsity, signals of interest often exhibits an underlying sparsity pattern which, if leveraged, can improve the reconstruct