ﻻ يوجد ملخص باللغة العربية
Terahertz time-domain conductivity measurements in 2 to 100 nm thick iron films resolve the femtosecond time delay between applied electric fields and resulting currents. This response time decreases for thinner metal films. The macroscopic response time depends on the mean and the variance of the distribution of microscopic momentum relaxation times of the conducting electrons. Comparing the recorded response times with DC-conductivities demonstrates increasing variance of the microscopic relaxation times with increasing film thickness. At least two electron species contribute to conduction in bulk with substantially differing relaxation times. The different electron species are affected differently by the confinement because they have different mean free paths.
Terahertz time-domain conductivity measurements in 2 to 100 nm thick iron films resolve the femtosecond time delay between applied electric fields and resulting currents. This current response time decreases from 29 fs for thickest films to 7 fs for
Transition metal oxides have long been an area of interest for water electrocatalysis through the oxygen evolution and oxygen reduction reactions. Iron oxides, such as LaFeO$_{3}$, are particularly promising due to the favorable energy alignment of t
The Gilbert damping of ferromagnetic materials is arguably the most important but least understood phenomenological parameter that dictates real-time magnetization dynamics. Understanding the physical origin of the Gilbert damping is highly relevant
A central theme in condensed matter physics is to create and understand the exotic states of matter by incorporating magnetism into topological materials. One prime example is the quantum anomalous Hall (QAH) state. Recently, MnBi2Te4 has been demons
A wide variety of new phenomena such as novel magnetization configurations have been predicted to occur in three dimensional magnetic nanostructures. However, the fabrication of such structures is often challenging due to the specific shapes required