ﻻ يوجد ملخص باللغة العربية
The Gilbert damping of ferromagnetic materials is arguably the most important but least understood phenomenological parameter that dictates real-time magnetization dynamics. Understanding the physical origin of the Gilbert damping is highly relevant to developing future fast switching spintronics devices such as magnetic sensors and magnetic random access memory. Here, we report an experimental study of temperature-dependent Gilbert damping in permalloy (Py) thin films of varying thicknesses by ferromagnetic resonance. From the thickness dependence, two independent contributions to the Gilbert damping are identified, namely bulk damping and surface damping. Of particular interest, bulk damping decreases monotonically as the temperature decreases, while surface damping shows an enhancement peak at the temperature of ~50 K. These results provide an important insight to the physical origin of the Gilbert damping in ultrathin magnetic films.
We report an enhanced magnetoelastic contribution to the Gilbert damping in highly magnetostrictive Fe$_{0.7}$Ga$_{0.3}$ thin films. This effect is mitigated for perpendicular-to-plane fields, leading to a large anisotropy of the Gilbert damping in a
We examine magnetic relaxation in polycrystalline Fe films with strong and weak crystallographic texture. Out-of-plane ferromagnetic resonance (FMR) measurements reveal Gilbert damping parameters of $approx$ 0.0024 for Fe films with thicknesses of 4-
Thin highly textured Fe$_{mathrm{1+x}}$Co$_{mathrm{2-x}}$Si ($0 leq$ x $leq 1$) films were prepared on MgO (001) substrates by magnetron co-sputtering. The magneto-optic Kerr effect (MOKE) and ferromagnetic resonance (FMR) measurements were used to i
Tailoring Gilbert damping of metallic ferromagnetic thin films is one of the central interests in spintronics applications. Here we report a giant Gilbert damping anisotropy in epitaxial Co$_{50}$Fe$_{50}$ thin film with a maximum-minimum damping rat
The effects of rhenium doping in the range 0 to 10 atomic percent on the static and dynamic magnetic properties of Fe65Co35 thin films have been studied experimentally as well as with first principles electronic structure calculations focusing on the