ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental Investigation of Temperature-Dependent Gilbert Damping in Permalloy Thin Films

109   0   0.0 ( 0 )
 نشر من قبل Wei Han
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Gilbert damping of ferromagnetic materials is arguably the most important but least understood phenomenological parameter that dictates real-time magnetization dynamics. Understanding the physical origin of the Gilbert damping is highly relevant to developing future fast switching spintronics devices such as magnetic sensors and magnetic random access memory. Here, we report an experimental study of temperature-dependent Gilbert damping in permalloy (Py) thin films of varying thicknesses by ferromagnetic resonance. From the thickness dependence, two independent contributions to the Gilbert damping are identified, namely bulk damping and surface damping. Of particular interest, bulk damping decreases monotonically as the temperature decreases, while surface damping shows an enhancement peak at the temperature of ~50 K. These results provide an important insight to the physical origin of the Gilbert damping in ultrathin magnetic films.



قيم البحث

اقرأ أيضاً

435 - William K. Peria 2021
We report an enhanced magnetoelastic contribution to the Gilbert damping in highly magnetostrictive Fe$_{0.7}$Ga$_{0.3}$ thin films. This effect is mitigated for perpendicular-to-plane fields, leading to a large anisotropy of the Gilbert damping in a ll of the films (up to a factor of 10 at room temperature). These claims are supported by broadband measurements of the ferromagnetic resonance linewidths over a range of temperatures (5 to 400 K), which serve to elucidate the effect of both the magnetostriction and phonon relaxation on the magnetoelastic Gilbert damping.
We examine magnetic relaxation in polycrystalline Fe films with strong and weak crystallographic texture. Out-of-plane ferromagnetic resonance (FMR) measurements reveal Gilbert damping parameters of $approx$ 0.0024 for Fe films with thicknesses of 4- 25 nm, regardless of their microstructural properties. The remarkable invariance with film microstructure strongly suggests that intrinsic Gilbert damping in polycrystalline Fe is a local property of nanoscale crystal grains, with limited impact from grain boundaries and film roughness. By contrast, the in-plane FMR linewidths of the Fe films exhibit distinct nonlinear frequency dependences, indicating the presence of strong extrinsic damping. To fit our experimental data, we have used a grain-to-grain two-magnon scattering model with two types of correlation functions aimed at describing the spatial distribution of inhomogeneities in the film. However, neither of the two correlation functions is able to reproduce the experimental data quantitatively with physically reasonable parameters. Our finding points to the need to further examine the fundamental impact of film microstructure on extrinsic damping.
Thin highly textured Fe$_{mathrm{1+x}}$Co$_{mathrm{2-x}}$Si ($0 leq$ x $leq 1$) films were prepared on MgO (001) substrates by magnetron co-sputtering. The magneto-optic Kerr effect (MOKE) and ferromagnetic resonance (FMR) measurements were used to i nvestigate the composition dependence of the magnetization, the magnetic anisotropy, the gyromagnetic ratio and the relaxation of the films. The effective magnetization for the thin Fe$_{mathrm{1+x}}$Co$_{mathrm{2-x}}$Si films, determined by FMR measurements, are consistent with the Slater Pauling prediction. Both MOKE and FMR measurements reveal a pronounced fourfold anisotropy distribution for all films. In addition we found a strong influence of the stoichiometry on the anisotropy as the cubic anisotropy strongly increases with increasing Fe concentration. The gyromagnetic ratio is only weakly dependent on the composition. We find low Gilbert damping parameters for all films with values down to $0.0012pm0.00012$ for Fe$_{1.75}$Co$_{1.25}$Si. The effective damping parameter for Co$_2$FeSi is found to be $0.0018pm 0.0004$. We also find a pronounced anisotropic relaxation, which indicates significant contributions of two-magnon scattering processes that is strongest along the easy axes of the films. This makes thin Fe$_{mathrm{1+x}}$Co$_{mathrm{2-x}}$Si films ideal materials for the application in STT-MRAM devices.
Tailoring Gilbert damping of metallic ferromagnetic thin films is one of the central interests in spintronics applications. Here we report a giant Gilbert damping anisotropy in epitaxial Co$_{50}$Fe$_{50}$ thin film with a maximum-minimum damping rat io of 400 %, determined by broadband spin-torque as well as inductive ferromagnetic resonance. We conclude that the origin of this damping anisotropy is the variation of the spin orbit coupling for different magnetization orientations in the cubic lattice, which is further corroborate from the magnitude of the anisotropic magnetoresistance in Co$_{50}$Fe$_{50}$.
The effects of rhenium doping in the range 0 to 10 atomic percent on the static and dynamic magnetic properties of Fe65Co35 thin films have been studied experimentally as well as with first principles electronic structure calculations focusing on the change of the saturation magnetization and the Gilbert damping parameter. Both experimental and theoretical results show that the saturation magnetization decreases with increasing Re doping level, while at the same time Gilbert damping parameter increases. The experimental low temperature saturation magnetic induction exhibits a 29 percent decrease, from 2.31 T to 1.64 T, in the investigated doping concentration range, which is more than predicted by the theoretical calculations. The room temperature value of the damping parameter obtained from ferromagnetic resonance measurements, correcting for extrinsic contributions to the damping, is for the undoped sample 0.0027, which is close to the theoretically calculated Gilbert damping parameter. With 10 atomic percent Re doping, the damping parameter increases to 0.0090, which is in good agreement with the theoretical value of 0.0073. The increase in damping parameter with Re doping is explained by the increase in density of states at Fermi level, mostly contributed by the spin-up channel of Re. Moreover, both experimental and theoretical values for the damping parameter are observed to be weakly decreasing with decreasing temperature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا