ترغب بنشر مسار تعليمي؟ اضغط هنا

$Spitzer$ Parallax of OGLE-2018-BLG-0596: A Low-mass-ratio Planet around an M-dwarf

94   0   0.0 ( 0 )
 نشر من قبل Youn Kil Jung
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the discovery of a $Spitzer$ microlensing planet OGLE-2018-BLG-0596Lb, with preferred planet-host mass ratio $q sim 2times10^{-4}$. The planetary signal, which is characterized by a short $(sim 1~{rm day})$ bump on the rising side of the lensing light curve, was densely covered by ground-based surveys. We find that the signal can be explained by a bright source that fully envelops the planetary caustic, i.e., a Hollywood geometry. Combined with the source proper motion measured from $Gaia$, the $Spitzer$ satellite parallax measurement makes it possible to precisely constrain the lens physical parameters. The preferred solution, in which the planet perturbs the minor image due to lensing by the host, yields a Uranus-mass planet with a mass of $M_{rm p} = 13.9pm1.6~M_{oplus}$ orbiting a mid M-dwarf with a mass of $M_{rm h} = 0.23pm0.03~M_{odot}$. There is also a second possible solution that is substantially disfavored but cannot be ruled out, for which the planet perturbs the major image. The latter solution yields $M_{rm p} = 1.2pm0.2~M_{oplus}$ and $M_{rm h} = 0.15pm0.02~M_{odot}$. By combining the microlensing and $Gaia$ data together with a Galactic model, we find in either case that the lens lies on the near side of the Galactic bulge at a distance $D_{rm L} sim 6pm1~{rm kpc}$. Future adaptive optics observations may decisively resolve the major image/minor image degeneracy.



قيم البحث

اقرأ أيضاً

82 - Y. Hirao , A. Udalski , T. Sumi 2016
We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high cadence observations taken by the survey groups OGLE and MOA. By analyzing the light curve, this planetary system is found to have a mass ratio $q=(1.58pm0.15)times10^{-3}$. By conducting a Bayesian analysis, we estimate that the host star is an M-dwarf star with a mass of $M_{rm L}=0.29_{-0.16}^{+0.33} M_{odot}$ located at $D_{rm L}=6.7_{-1.2}^{+1.1} {rm kpc}$ away from the Earth and the companions mass is $m_{rm P}=0.47_{-0.26}^{+0.54} M_{rm Jup}$. The projected planet-host separation is $a_{perp}=1.6_{-0.3}^{+0.4} {rm AU}$. Because the lens-source relative proper motion is relatively high, future high resolution images would detect the lens host star and determine the lens properties uniquely. This system is likely a Saturn-mass exoplanet around an M-dwarf and such systems are commonly detected by gravitational microlensing. This adds an another example of a possible pileup of sub-Jupiters $(0.2 < m_{rm P}/M_{rm Jup} < 1)$ in contrast to a lack of Jupiters ($sim 1 - 2 M_{rm Jup}$) around M-dwarfs, supporting the prediction by core accretion models that Jupiter-mass or more massive planets are unlikely to form around M-dwarfs.
We report the analysis of planetary microlensing event OGLE-2018-BLG-1185, which was observed by a large number of ground-based telescopes and by the $Spitzer$ Space Telescope. The ground-based light curve indicates a low planet-host star mass ratio of $q = (6.9 pm 0.2) times 10^{-5}$, which is near the peak of the wide-orbit exoplanet mass-ratio distribution. We estimate the host star and planet masses with a Bayesian analysis using the measured angular Einstein radius under the assumption that stars of all masses have an equal probability to host this planet. The flux variation observed by $Spitzer$ was marginal, but still places a constraint on the microlens parallax. Imposing a conservative constraint that this flux variation should be $Delta f_{rm Spz} < 4$ instrumental flux units indicates a host mass of $M_{rm host} = 0.37^{+0.35}_{-0.21} M_odot$ and a planet mass of $m_{rm p} = 8.4^{+7.9}_{-4.7} M_oplus$. A Bayesian analysis including the full parallax constraint from $Spitzer$ suggests smaller host star and planet masses of $M_{rm host} = 0.091^{+0.064}_{-0.018} M_odot$ and $m_{rm p} = 2.1^{+1.5}_{-0.4} M_oplus$, respectively. Future high-resolution imaging observations with $HST$ or ELTs could distinguish between these two scenarios and help to reveal the planetary system properties in more detail.
94 - Andrew Gould 2019
At $q=1.81pm 0.20 times 10^{-5}$, KMT-2018-BLG-0029Lb has the lowest planet-host mass ratio $q$ of any microlensing planet to date by more than a factor of two. Hence, it is the first planet that probes below the apparent pile-up at $q=5$--10 $times 10^{-5}$. The event was observed by {it Spitzer}, yielding a microlens-parallax $pi_{rm E}$ measurement. Combined with a measurement of the Einstein radius $theta_{rm E}$ from finite-source effects during the caustic crossings, these measurements imply masses of the host $M_{rm host}=1.14^{+0.10}_{-0.12}, M_odot$ and planet $M_{rm planet} = 7.59^{+0.75}_{-0.69},M_oplus$, system distance $D_L = 3.38^{+0.22}_{-0.26},,{rm kpc}$ and projected separation $a_perp = 4.27^{+0.21}_{-0.23},{rm au}$. The blended light, which is substantially brighter than the microlensed source, is plausibly due to the lens and could be observed at high resolution immediately.
88 - Y. Hirao , A. Udalski , T. Sumi 2017
We report the discovery and the analysis of the planetary microlensing event, OGLE-2013-BLG-1761. There are some degenerate solutions in this event because the planetary anomaly is only sparsely sampled. But the detailed light curve analysis ruled ou t all stellar binary models and shows that the lens to be a planetary system. There is the so-called close/wide degeneracy in the solutions with the planet/host mass ratio of $q sim (7.5 pm 1.5) times 10^{-3}$ and $q sim (9.3 pm 2.9) times 10^{-3}$ with the projected separation in Einstein radius units of $s = 0.95$ (close) and $s = 1.19$ (wide), respectively. The microlens parallax effect is not detected but the finite source effect is detected. Our Bayesian analysis indicates that the lens system is located at $D_{rm L}=6.9_{-1.2}^{+1.0} {rm kpc}$ away from us and the host star is an M/K-dwarf with the mass of $M_{rm L}=0.33_{-0.18}^{+0.32} M_{odot}$ orbited by a super-Jupiter mass planet with the mass of $m_{rm P}=2.8_{-1.5}^{+2.5} M_{rm Jup}$ at the projected separation of $a_{perp}=1.8_{-0.5}^{+0.5} {rm AU}$. The preference of the large lens distance in the Bayesian analysis is due to the relatively large observed source star radius. The distance and other physical parameters can be constrained by the future high resolution imaging by ground large telescopes or HST. If the estimated lens distance is correct, this planet provides another sample for testing the claimed deficit of planets in the Galactic bulge.
We report the discovery and analysis of a sub-Saturn-mass planet in the microlensing event OGLE-2018-BLG-0799. The planetary signal was observed by several ground-based telescopes, and the planet-host mass ratio is $q = (2.65 pm 0.16) times 10^{-3}$. The ground-based observations yield a constraint on the angular Einstein radius $theta_{rm E}$, and the microlens parallax $pi_{rm E}$ is measured from the joint analysis of the Spitzer and ground-based observations, which suggests that the host star is most likely to be a very low-mass dwarf. A full Bayesian analysis using a Galactic model indicates that the planetary system is composed of an $M_{rm planet} = 0.22_{-0.06}^{+0.19}~M_{J}$ planet orbiting an $M_{rm host} = 0.080_{-0.020}^{+0.080}~M_odot$, at a distance of $D_{rm L} = 4.42_{-1.23}^{+1.73}$ kpc. The projected planet-host separation is $r_perp = 1.27_{-0.29}^{+0.45}$ AU, implying that the planet is located beyond the snowline of the host star. However, because of systematics in the Spitzer photometry, there is ambiguity in the parallax measurement, so the system could be more massive and farther away.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا