ﻻ يوجد ملخص باللغة العربية
We report the discovery of a planet by the microlensing method, OGLE-2012-BLG-0724Lb. Although the duration of the planetary signal for this event was one of the shortest seen for a planetary event, the anomaly was well covered thanks to high cadence observations taken by the survey groups OGLE and MOA. By analyzing the light curve, this planetary system is found to have a mass ratio $q=(1.58pm0.15)times10^{-3}$. By conducting a Bayesian analysis, we estimate that the host star is an M-dwarf star with a mass of $M_{rm L}=0.29_{-0.16}^{+0.33} M_{odot}$ located at $D_{rm L}=6.7_{-1.2}^{+1.1} {rm kpc}$ away from the Earth and the companions mass is $m_{rm P}=0.47_{-0.26}^{+0.54} M_{rm Jup}$. The projected planet-host separation is $a_{perp}=1.6_{-0.3}^{+0.4} {rm AU}$. Because the lens-source relative proper motion is relatively high, future high resolution images would detect the lens host star and determine the lens properties uniquely. This system is likely a Saturn-mass exoplanet around an M-dwarf and such systems are commonly detected by gravitational microlensing. This adds an another example of a possible pileup of sub-Jupiters $(0.2 < m_{rm P}/M_{rm Jup} < 1)$ in contrast to a lack of Jupiters ($sim 1 - 2 M_{rm Jup}$) around M-dwarfs, supporting the prediction by core accretion models that Jupiter-mass or more massive planets are unlikely to form around M-dwarfs.
We report the discovery of a microlensing exoplanet OGLE-2012-BLG-0563Lb with the planet-star mass ratio ~1 x 10^{-3}. Intensive photometric observations of a high-magnification microlensing event allow us to detect a clear signal of the planet. Alth
We report the discovery and the analysis of the planetary microlensing event, OGLE-2013-BLG-1761. There are some degenerate solutions in this event because the planetary anomaly is only sparsely sampled. But the detailed light curve analysis ruled ou
We report the discovery of a $Spitzer$ microlensing planet OGLE-2018-BLG-0596Lb, with preferred planet-host mass ratio $q sim 2times10^{-4}$. The planetary signal, which is characterized by a short $(sim 1~{rm day})$ bump on the rising side of the le
We present the analysis of the binary-lens microlensing event OGLE-2013-BLG-0911. The best-fit solutions indicate the binary mass ratio of q~0.03 which differs from that reported in Shvartzvald+2016. The event suffers from the well-known close/wide d
We present the discovery of two planetary systems consisting of a Saturn-mass planet orbiting an M-dwarf, which were detected in faint microlensing events OGLE-2013-BLG-0132 and OGLE-2013-BLG-1721. The planetary anomalies were covered with high caden