ترغب بنشر مسار تعليمي؟ اضغط هنا

Dark Matter in logarithmic $F(R)$ gravity

83   0   0.0 ( 0 )
 نشر من قبل Matsuo Yamato
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The logarithmic $R^2$-corrected $F(R)$ gravity is investigated as a prototype model of modified gravity theories with quantum corrections. By using the auxiliary field method, the model is described by the general relativity with a scalaron field. The scalaron field can be identified as an inflaton at the primordial inflation era. It is also one of the dark matter candidates in the dark energy era. It is found that a wide range of the parameters is consistent with the current observations of CMB fluctuations, dark energy and dark matter.



قيم البحث

اقرأ أيضاً

In gravity theories derived from a f(R) Lagrangian, matter is usually supposed to be minimally coupled to the metric, which hence defines a ``Jordan frame. However, since the field equations are fourth order, gravity possesses an extra degree of free dom on top of the standard graviton, as is manifest from its equivalent description in the conformally related, Einstein, frame. We introduce explicitly this extra scalar degree of freedom in the action and couple it to matter, so that the original metric no longer defines a Jordan frame. This ``detuning puts f(R) gravity into a wider class of scalar--tensor theories. We argue that a ``chameleon-like detuning tracing the background matter density may provide purely gravitational models which account for the present acceleration of the universe and evade local gravity constraints.
56 - M. Bousder , Z. Sakhi , M. Bennai 2020
We propose a new unified model that describes~dark energy and dark matter in the context of $f(R,phi )$ gravity using a massive scalar field in five dimensions. The scalar field is considered in the bulk that surrounds the 3-brane in branworld model. We show that for a specific choice of the $% f(R,phi )$ function, we can describe the Einstein gravitation in 4-dimensional space-time. We obtain a relationship between the speed of the universes expansion and the speed of the bulks expansion. We also propose that the dark matter is represented by the scalar field mass and that the dark energy is a kinetic energy of this field. Finally, we show that, according to conditions, one can obtain the percentages of density of dark matter and the density of ordinary matter.
A review of the new of the problem of dark energy using modified gravity approach is considered. An explanation of the difficulties facing modern cosmology is given and different approaches are presented. We show why some models of gravity may suffer of instabilities and how some are inconsistent with observations.
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor an d $eta$ the model parameter (constant). We first investigated an inflationary scenario where the inflation is driven purely due to geometric effects outside of GR. We found the inflation observables to be independent of the number of e-foldings in this setup. The computed value of the spectral index is consistent with latest Planck 2018 dataset while the scalar to tensor ratio is a bit higher. We then proceeded to analyze the behavior of an inflation driven by $f(R,T)$ gravity coupled with a real scalar field. By taking the slow-roll approximation, we generated interesting scenarios where a Klein Gordon potential leads to observationally consistent inflation observables. Our results makes it clear-cut that in addition to the Ricci scalar and scalar fields, the trace of energy momentum tensor also play a major role in driving inflationary scenarios.
Using dynamical system analysis, we explore the cosmology of theories of order up to eight order of the form $f(R, Box R)$. The phase space of these cosmology reveals that higher-order terms can have a dramatic influence on the evolution of the cosmo logy, avoiding the onset of finite time singularities. We also confirm and extend some of results which were obtained in the past for this class of theories.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا