ترغب بنشر مسار تعليمي؟ اضغط هنا

Detuned f(R) gravity and dark energy

117   0   0.0 ( 0 )
 نشر من قبل Misao Sasaki
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In gravity theories derived from a f(R) Lagrangian, matter is usually supposed to be minimally coupled to the metric, which hence defines a ``Jordan frame. However, since the field equations are fourth order, gravity possesses an extra degree of freedom on top of the standard graviton, as is manifest from its equivalent description in the conformally related, Einstein, frame. We introduce explicitly this extra scalar degree of freedom in the action and couple it to matter, so that the original metric no longer defines a Jordan frame. This ``detuning puts f(R) gravity into a wider class of scalar--tensor theories. We argue that a ``chameleon-like detuning tracing the background matter density may provide purely gravitational models which account for the present acceleration of the universe and evade local gravity constraints.



قيم البحث

اقرأ أيضاً

We propose a cosmological scenario in which the universe undergoes through a non-singular bounce, and after the bounce, it decelerates having a matter-like dominated evolution during some regime of the deceleration era, and finally at the present epo ch it evolves through an accelerating stage. Our aim is to study such evolution in the context of Chern-Simons corrected F(R) gravity theory and confront the model with various observational data. Using the reconstruction technique, and in addition by employing suitable boundary conditions, we determine the form of F(R) for the entire possible range of the cosmic time. The form of F(R) seems to unify a non-singular bounce with a dark energy epoch, in particular, from a non-singular bounce to a deceleration epoch and from a deceleration epoch to a late time acceleration era. It is important to mention that the bouncing scenario in the present context is an asymmetric bounce, in particular, the Hubble radius monotonically increases and asymptotically diverges at the late contracting era, while it seems to decrease with time at the present epoch. Such evolution of the Hubble radius leads to the primordial perturbation modes generate at the deep contracting era when all the perturbation modes lie within the horizon. We calculate the scalar and tensor power spectra, and as a result, the primordial observables are found to be in agreement with the latest Planck 2018 constraints. In this regard, the Chern-Simons term seems to have considerable effects on the tensor perturbation evolution, however keeping intact the scalar part of the perturbation with that of in the case of a vacuum F(R) model, and as a result, the Chern-Simons term proves to play an important role in making the observable quantities consistent with the Planck results. Furthermore the theoretical expectation of the dark energy observables are confronted with the Planck+SNe+BAO data.
The article presents modeling of inflationary scenarios for the first time in the $f(R,T)$ theory of gravity. We assume the $f(R,T)$ functional from to be $R + eta T$, where $R$ denotes the Ricci scalar, $T$ the trace of the energy-momentum tensor an d $eta$ the model parameter (constant). We first investigated an inflationary scenario where the inflation is driven purely due to geometric effects outside of GR. We found the inflation observables to be independent of the number of e-foldings in this setup. The computed value of the spectral index is consistent with latest Planck 2018 dataset while the scalar to tensor ratio is a bit higher. We then proceeded to analyze the behavior of an inflation driven by $f(R,T)$ gravity coupled with a real scalar field. By taking the slow-roll approximation, we generated interesting scenarios where a Klein Gordon potential leads to observationally consistent inflation observables. Our results makes it clear-cut that in addition to the Ricci scalar and scalar fields, the trace of energy momentum tensor also play a major role in driving inflationary scenarios.
128 - Diego Saez-Gomez 2012
One of the so-called viable modified gravities is analyzed. This kind of gravity theories are characterized by a well behavior at local scales, where General Relativity is recovered, while the modified terms become important at the cosmological level , where the late-time accelerating era is reproduced, and even the inflationary phase. In the present work, the future cosmological evolution for one of these models is studied. A transition to the phantom phase is observed. Furthermore, the scalar-tensor equivalence of f(R) gravity is also considered, which provides important information concerning this kind of models.
The logarithmic $R^2$-corrected $F(R)$ gravity is investigated as a prototype model of modified gravity theories with quantum corrections. By using the auxiliary field method, the model is described by the general relativity with a scalaron field. Th e scalaron field can be identified as an inflaton at the primordial inflation era. It is also one of the dark matter candidates in the dark energy era. It is found that a wide range of the parameters is consistent with the current observations of CMB fluctuations, dark energy and dark matter.
We explore the cosmological dynamics of an effective f(R) model constructed from a renormalisation group (RG) improvement of the Einstein--Hilbert action, using the non-perturbative beta functions of the exact renormalisation group equation. The resu lting f(R) model has some remarkable properties. It naturally exhibits an unstable de Sitter era in the ultraviolet (UV), dynamically connected to a stable de Sitter era in the IR, via a period of radiation and matter domination, thereby describing a non-singular universe. We find that the UV de Sitter point is one of an infinite set, which make the UV RG fixed point inaccessible to classical cosmological evolution. In the vicinity of the fixed point, the model behaves as R^2 gravity, while it correctly recovers General Relativity at solar system scales. In this simplified model, the fluctuations are too large to be the observed ones, and more ingredients in the action are needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا