ترغب بنشر مسار تعليمي؟ اضغط هنا

Similarity of magnetized plasma wake channels behind relativistic laser pulses with different wavelengths

108   0   0.0 ( 0 )
 نشر من قبل Andreas Bierwage
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Using particle-in-cell simulations of relativistic laser plasma wakes in the presence of an external magnetic field, we demonstrate that there exists a parameter window where the dynamics of the magnetized wake channel are largely independent of the laser wavelength $lambda_{rm las}$. One condition for this manifestation of limited similarity is that the electron density $n_{rm e}$ is highly subcritical, so that the plasma does not affect the laser. The freedom to choose a convenient laser wavelength can be useful in experiments and simulations. In simulations, an up-scaled wavelength (and, thus, a coarser mesh and larger time steps) reduces the computational effort, while limited similarity ensures that the overall structure and evolutionary phases of the wake channel are preserved. In our demonstrative example, we begin with a terrawatt$cdot$picosecond pulse from a ${rm CO}_2$ laser with $lambda_{rm las} = 10,mu{rm m}$, whose field reaches a relativistic amplitude at the center of a sub-millimeter-sized focal spot. The laser is shot into a sparse deuterium gas ($n_{rm e} sim 10^{13},{rm cm}^{-3}$) in the presence of a tesla-scale magnetic field. Limited similarity is demonstrated in 2D for $4,mu{rm m} leq lambda_{rm las} leq 40,mu{rm m}$ and is expected to extend to shorter wavelengths. Assuming that this limited similarity also holds in 3D, increasing the wavelength to $40,mu{rm m}$ enables us to simulate the after-glow dynamics of the wake channel all the way into the nanosecond regime.



قيم البحث

اقرأ أيضاً

The effect of a magnetic field on the characteristics of capacitively coupled radio frequency discharges is investigated and found to be substantial. A one-dimensional particle-in-cell simulation shows that geometrically symmetric discharges can be a symmetrized by applying a spatially inhomogeneous magnetic field. This effect is similar to the recently discovered electrical asymmetry effect. Both effects act independently, they can work in the same direction or compensate each other. Also the ion energy distribution functions at the electrodes are strongly affected by the magnetic field, although only indirectly. The field influences not the dynamics of the sheath itself but rather its operating conditions, i.e., the ion flux through it and voltage drop across it. To support this interpretation, the particle-in-cell results are compared with the outcome of the recently proposed ensemble-in-spacetime algorithm. Although that scheme resolves only the sheath and neglects magnetization, it is able to reproduce the ion energy distribution functions with very good accuracy, regardless of whether the discharge is magnetized or not.
102 - Guoqian Liao , Hao Liu , Yutong Li 2018
Ultrahigh-power terahertz (THz) radiation sources are essential for many applications, such as nonlinear THz physics, THz-wave based compact accelerators, etc. However, until now none of THz sources reported, whether based upon large-scale accelerato rs or high power lasers, have produced THz pulses with energies above the millijoule (mJ) barrier. Here we report on the efficient generation of low-frequency (<3 THz) THz pulses with unprecedentedly high energies over 50 mJ. The THz radiation is produced by coherent transition radiation of a picosecond laser-accelerated ultra-bright bunch of relativistic electrons from a solid target. Such high energy THz pulses can not only trigger various nonlinear dynamics in matter, but also open up a new research field of relativistic THz optics.
237 - X. L. Xu 2014
Ionization injection triggered by short wavelength laser pulses inside a nonlinear wakefield driven by a longer wavelength laser is examined via multi-dimensional particle-in-cell simulations. We find that very bright electron beams can be generated through this two-color scheme in either collinear propagating or transverse colliding geometry. For a fixed laser intensity $I$, lasers with longer/shorter wavelength $lambda$ have larger/smaller ponderomotive potential ($propto I lambda^2$). The two color scheme utilizes this property to separate the injection process from the wakefield excitation process. Very strong wakes can be generated at relatively low laser intensities by using a longer wavelength laser driver (e.g. a $10 micrometer$ CO$_2$ laser) due to its very large ponderomotive potential. On the other hand, short wavelength laser can produce electrons with very small residual momenta ($p_perpsim a_0sim sqrt{I}lambda$) inside the wake, leading to electron beams with very small normalized emittances (tens of $ anometer$). Using particle-in-cell simulations we show that a $sim10 femtosecond$ electron beam with $sim4 picocoulomb$ of charge and a normalized emittance of $sim 50 anometer$ can be generated by combining a 10 $micrometer $ driving laser with a 400 $ anometer$ injection laser, which is an improvement of more than one order of magnitude compared to the typical results obtained when a single wavelength laser used for both the wake formation and ionization injection.
We consider backscattering of laser pulses in strongly-magnetized plasma mediated by kinetic magnetohydrodynamic waves. Magnetized low-frequency scattering, which can occur when the external magnetic field is neither perpendicular nor parallel to the laser propagation direction, provides an instability growth rate higher than Raman scattering and a frequency downshift comparable to Brillouin scattering. In addition to the high growth rate, which allows smaller plasmas, and the 0.1-2% frequency downshift, which permits a wide range of pump sources, MLF scattering is an ideal candidate for amplification because the process supports an extremely large bandwidth, which particle-in-cell simulations show produces ultrashort durations. Under some conditions, MLF scattering also becomes the dominant spontaneous backscatter instability, with implications for magnetized laser-confinement experiments.
Propagation and scattering of lasers present new phenomena and applications when the plasma medium becomes strongly magnetized. With mega-Gauss magnetic fields, scattering of optical lasers already becomes manifestly anisotropic. Special angles exist where coherent laser scattering is either enhanced or suppressed, as we demonstrate using a cold-fluid model. Consequently, by aiming laser beams at special angles, one may be able to optimize laser-plasma coupling in magnetized implosion experiments. In addition, magnetized scattering can be exploited to improve the performance of plasma-based laser pulse amplifiers. Using the magnetic field as an extra control variable, it is possible to produce optical pulses of higher intensity, as well as compress UV and soft x-ray pulses beyond the reach of other methods. In even stronger giga-Gauss magnetic fields, laser-plasma interactions begin to enter the relativistic-quantum regime. Using quantum electrodynamics, we compute modified wave dispersion relation, which enables correct interpretation of Faraday rotation measurements of strong magnetic fields.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا