ﻻ يوجد ملخص باللغة العربية
The ambient solar wind conditions in interplanetary space and in the near-Earth environment are determined by activity on the Sun. Steady solar wind streams modulate the propagation behaviour of interplanetary coronal mass ejections and are themselves an important driver of recurrent geomagnetic storm activity. The knowledge of the ambient solar wind flows and fields is thus an essential component of successful space weather forecasting. Here, we present an implementation of an operational framework for operating, validating and optimizing models of the ambient solar wind flow on the example of Carrington Rotation 2077. We reconstruct the global topology of the coronal magnetic field using the potential field source surface model (PFSS) and the Schatten current sheet model (SCS), and discuss three empirical relationships for specifying the solar wind conditions near the Sun, namely the Wang-Sheeley (WS) model, the distance from the coronal hole boundary (DCHB) model, and the Wang-Sheeley-Arge (WSA) model. By adding uncertainty in the latitude about the sub-Earth point, we select an ensemble of initial conditions and map the solutions to Earth by the Heliospheric Upwind eXtrapolation (HUX) model. We assess the forecasting performance from a continuous variable validation, and find that the WSA model most accurately predicts the solar wind speed time series. We note that the process of ensemble forecasting slightly improves the forecasting performance of all solar wind models investigated. We conclude that the implemented framework is well suited for studying the relationship between coronal magnetic fields and the properties of the ambient solar wind flow in the near-Earth environment.
The ambient solar wind flows and fields influence the complex propagation dynamics of coronal mass ejections in the interplanetary medium and play an essential role in shaping Earths space weather environment. A critical scientific goal in the space
We investigate the anisotropy of Alfvenic turbulence in the inertial range of slow solar wind and in both driven and decaying reduced magnetohydrodynamic simulations. A direct comparison is made by measuring the anisotropic second-order structure fun
One essential component of operational space weather forecasting is the prediction of solar flares. With a multitude of flare forecasting methods now available online it is still unclear which of these methods performs best, and none are substantiall
The solar wind is a magnetized plasma and as such exhibits collective plasma behavior associated with its characteristic spatial and temporal scales. The characteristic length scales include the size of the heliosphere, the collisional mean free path
Electromagnetic cyclotron waves (ECWs) near the proton cyclotron frequency are frequently observed in the solar wind, yet their generation mechanism is still an open question. Based on the Wind data during the years 2005$-$2015, this paper carries ou