ﻻ يوجد ملخص باللغة العربية
One essential component of operational space weather forecasting is the prediction of solar flares. With a multitude of flare forecasting methods now available online it is still unclear which of these methods performs best, and none are substantially better than climatological forecasts. Space weather researchers are increasingly looking towards methods used by the terrestrial weather community to improve current forecasting techniques. Ensemble forecasting has been used in numerical weather prediction for many years as a way to combine different predictions in order to obtain a more accurate result. Here we construct ensemble forecasts for major solar flares by linearly combining the full-disk probabilistic forecasts from a group of operational forecasting methods (ASAP, ASSA, MAG4, MOSWOC, NOAA, and MCSTAT). Forecasts from each method are weighted by a factor that accounts for the methods ability to predict previous events, and several performance metrics (both probabilistic and categorical) are considered. It is found that most ensembles achieve a better skill metric (between 5% and 15%) than any of the members alone. Moreover, over 90% of ensembles perform better (as measured by forecast attributes) than a simple equal-weights average. Finally, ensemble uncertainties are highly dependent on the internal metric being optimized and they are estimated to be less than 20% for probabilities greater than 0.2. This simple multi-model, linear ensemble technique can provide operational space weather centres with the basis for constructing a versatile ensemble forecasting system -- an improved starting point to their forecasts that can be tailored to different end-user needs.
Little is known about the origin of the high-energy and sustained emission from solar Long-Duration Gamma-Ray Flares (LDGRFs), identified with the Compton Gamma Ray Observatory (CGRO), the Solar Maximum Mission (SMM), and now Fermi. Though Fermi/Larg
Space weather indices are commonly used to drive operational forecasts of various geospace systems, including the thermosphere for mass density and satellite drag. The drivers serve as proxies for various processes that cause energy flow and depositi
The ambient solar wind flows and fields influence the complex propagation dynamics of coronal mass ejections in the interplanetary medium and play an essential role in shaping Earths space weather environment. A critical scientific goal in the space
Solar activity, ranging from the background solar wind to energetic coronal mass ejections (CMEs), is the main driver of the conditions in the interplanetary space and in the terrestrial space environment, known as space weather. A better understandi
We simulate decaying turbulence in a homogeneous pair plasma using three dimensional electromagnetic particle-in-cell (PIC) method. A uniform background magnetic field permeates the plasma such that the magnetic pressure is three times larger than th