ﻻ يوجد ملخص باللغة العربية
The breaking of parity and time-reversal symmetry in two-dimensional Fermi liquids gives rise to non-dissipative transport features characterized by the Hall viscosity. In magnetic fields, the Hall viscous force directly competes with the Lorentz force, since both mechanisms contribute to the Hall voltage. In this work, we present a channel geometry that allows us to uniquely distinguish these two contributions and derive, for the first time, their functional dependency on all external parameters. We show that the ratio of the Hall viscous to the Lorentz force contribution is negative and that its modulus decreases with increasing width, slip-length and carrier density, while it increases with the electron-electron mean free path of our channel. In typical materials such as GaAs the Hall viscous contribution can dominate the Lorentz signal up to a few tens of millitesla until the total Hall voltage vanishes and subsequently is overcome by the Lorentz contribution. Moreover, we prove that the total Hall electric field is parabolic due to Lorentz effects, whereas the offset of this parabola is characterized by the Hall viscosity. Hence, our results pave the way to measure and identify the Hall viscosity via both global and local voltage measurements.
The combination of Dirac physics and elasticity has been explored at length in graphene where the so--called elastic gauge fields have given rise to an entire new field of research and applications: Straintronics. The fact that these elastic fields c
We show that 3D Lifshitz fermions arising as the critical theory at the Weyl semimetal/insulator transition naturally develop an anomalous Hall viscosity at finite temperature. We discuss how to couple the system to non-relativistic background source
The Hall viscosity has been proposed as a topological property of incompressible fractional quantum Hall states and can be evaluated as Berry curvature. This paper reports on the Hall viscosities of composite-fermion Fermi seas at $ u=1/m$, where $m$
A circularly polarized a.c. pump field illuminated near resonance on two-dimensional transition metal dichalcogenides (TMDs) produces an anomalous Hall effect in response to a d.c. bias field. In this work, we develop a theory for this photo-induced
While nondissipative hydrodynamics in two-dimensional electron systems has been extensively studied, the role of nondissipative viscosity in three-dimensional transport has remained elusive. In this work, we address this question by studying the nond