ﻻ يوجد ملخص باللغة العربية
We develop a broadband spectral model, agnsli}, to describe super-Eddington black hole accretion disc spectra. This is based on the slim disc emissivity, where radial advection keeps the surface luminosity at the local Eddington limit, resulting in L(r)~ r^{-2} rather than the r^{-3} expected from the Novikov-Thorne (standard, sub-Eddington) disc emissivity. Wind losses should also be important but these are expected to produce a similar radiative emissivity. We assume that the flow is radially stratified, with an outer standard disc, an inner hot Comptonising region and an intermediate warm Comptonising region to produce the soft X-ray excess. This gives the model enough flexibility to fit the observed data, but with the additional requirement of energy conservation to give physical constraints. We use this to fit the broadband spectrum of one of the most extreme Active Galactic Nuclei, the Narrow Line Seyfert 1 RX J0439.6-5311, which has a black hole mass of (6~9) times 10^6 solar mass as derived from the H_beta line width. This cannot be fit with the standard disc emissivity at this mass, as even zero spin models overproduce the observed luminosity. Instead, we show that the spectrum is well reproduced by the slim disc model, giving mass accretion rates around (5~10) times Eddington limit. There is no constraint on black hole spin as the efficiency is reduced by advection. Such extreme accretion rates should be characteristic of the first Quasars, and we demonstrate this by fitting to the spectrum of a recently discovered super-Eddington Quasar, PSO J006+39, at z=6.6.
Spectral properties of super-Eddington accretion flows are investigated by means of a parallel line-of-sight calculation. The subjacent model, taken from two-dimensional radiation hydrodynamic simulations by Ohsuga et al. (2005), consists of a disc a
Gravitational microlensing by the stellar population of lensing galaxies provides an important opportunity to spatially resolve the accretion disk structure in strongly lensed quasars. Some of the objects (like Einsteins cross) are reasonably consist
We have acquired radio continuum data between 70,MHz and 48,GHz for a sample of 19 southern starburst galaxies at moderate redshifts ($0.067 < z < 0.227$) with the aim of separating synchrotron and free-free emission components. Using a Bayesian fram
The origin of the radio emission in radio-quiet quasars (RQQs) remains unclear. Radio photons may be produced by a scaled-down version of the relativistic jets observed in radio-loud (RL) AGN, an AGN-driven wind, the accretion disc corona, AGN photon
Super-Eddington mass accretion has been suggested as an efficient mechanism to grow supermassive black holes (SMBHs). We investigate the imprint left by the radiative efficiency of the super-Eddington accretion process on the clustering of quasars us