ﻻ يوجد ملخص باللغة العربية
This paper summarizes the idea of ChargeCache, which was published in HPCA 2016 [51], and examines the works significance and future potential. DRAM latency continues to be a critical bottleneck for system performance. In this work, we develop a low-cost mechanism, called ChargeCache, that enables faster access to recently-accessed rows in DRAM, with no modifications to DRAM chips. Our mechanism is based on the key observation that a recently-accessed row has more charge and thus the following access to the same row can be performed faster. To exploit this observation, we propose to track the addresses of recently-accessed rows in a table in the memory controller. If a later DRAM request hits in that table, the memory controller uses lower timing parameters, leading to reduced DRAM latency. Row addresses are removed from the table after a specified duration to ensure rows that have leaked too much charge are not accessed with lower latency. We evaluate ChargeCache on a wide variety of workloads and show that it provides significant performance and energy benefits for both single-core and multi-core systems.
DRAM-based memory is a critical factor that creates a bottleneck on the system performance since the processor speed largely outperforms the DRAM latency. In this thesis, we develop a low-cost mechanism, called ChargeCache, which enables faster acces
This paper summarizes the idea of Subarray-Level Parallelism (SALP) in DRAM, which was published in ISCA 2012, and examines the works significance and future potential. Modern DRAMs have multiple banks to serve multiple memory requests in parallel. H
Over the past two decades, the storage capacity and access bandwidth of main memory have improved tremendously, by 128x and 20x, respectively. These improvements are mainly due to the continuous technology scaling of DRAM (dynamic random-access memor
This paper summarizes our work on experimental characterization and analysis of reduced-voltage operation in modern DRAM chips, which was published in SIGMETRICS 2017, and examines the works significance and future potential. We take a comprehensiv
DRAM is the prevalent main memory technology, but its long access latency can limit the performance of many workloads. Although prior works provide DRAM designs that reduce DRAM access latency, their reduced storage capacities hinder the performance