ترغب بنشر مسار تعليمي؟ اضغط هنا

Superconducting properties in a candidate topological nodal line semimetal SnTaS$_2$ with a centrosymmetric crystal structure

84   0   0.0 ( 0 )
 نشر من قبل Dong Chen
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the magnetization, electrical resistivity, specific heat measurements and band structure calculations of layered superconductor SnTaS$_2$. The experiments are performed on single crystals grown by chemical vapor transport method. The resistivity and magnetic susceptibility indicate that SnTaS$_2$ is a type-II superconductor with transition temperature $T_c = 3$ K. The upper critical field ($H_{c2}$) shows large anisotropy for magnetic field parallel to $ab$ plane ($H//ab$) and $c$ axis ($H//c$), and the temperature dependence of $H_{c2}$ for $H//ab$ shows obvious unconventional upward feature at low temperature. Band structure of SnTaS$_2$ shows several band crossings near the Fermi level, which form three nodal lines in the k$_z$ = 0 plane resulting in drumhead-like surface states when spin-orbit coupling is not considered. These results indicate that SnTaS$_2$ is a superconductor with possible topological nodal line semimetal character.



قيم البحث

اقرأ أيضاً

We observed quantum oscillations in thermoelectric and magnetic torque signals in non-centrosymmetric superconductor PbTaSe$_2$. One oscillatory frequency stems from the orbits formed by magnetic breakdown, while others are from two-dimensional-like Fermi surfaces near the topological nodal rings. Our comprehensive understanding of the Fermi surface topology of PbTaSe$_2$, including nailing down the Fermi level and detecting the Berry phases near the nodal rings, is crucial for searching plausible topological superconductivity in its bulk and surface states.
We report the experimental and theoretical studies of a magnetic topological nodal line semimetal candidate HoSbTe. Single crystals of HoSbTe are grown from Sb flux, crystallizing in a tetragonal layered structure (space group: P4/nmm, no.129), in wh ich the Ho-Te bilayer is separated by the square-net Sb layer. The magnetization and specific heat present distinct anomalies at 4 K related to an antiferromagnetic (AFM) phase transition. Meanwhile, with applying magnetic field perpendicular and parallel to the crystallographic c axis, an obvious magnetic anisotropy is observed. Electrical resistivity undergoes a bad-metal-like state below 200 K and reveals a plateau at about 8 K followed by a drop due to the AFM transition. In addition, with the first-principle calculations of band structure, we find that HoSbTe is a topological nodal line semimetal or a weak topological insulator with or without taking the spin-orbit coupling into account, providing a platform to investigate the interplay between magnetic and topological fermionic properties.
ZrSiS was recently shown to be a new material with topologically non-trivial band structure which exhibits multiple Dirac nodes and a robust linear band dispersion up to an unusually high energy of 2,eV. Such a robust linear dispersion makes the topo logical properties of ZrSiS insensitive to perturbations like carrier doping or lattice distortion. Here we show that a novel superconducting phase with a remarkably high $T_c$ of 7.5,K can be induced in single crystals of ZrSiS by a non-superconducting metallic tip of Ag. From first-principles calculations we show that the observed superconducting phase might originate from dramatic enhancement of density of states due to the presence of a metallic tip on ZrSiS. Our calculations also show that the emerging tip-induced superconducting phase co-exists with the well preserved topological properties of ZrSiS.
NaAlSi is an sp electron superconductor crystallizing in a layered structure of the anti-PbFCl type with a relatively high transition temperature Tc of ~7 K. Recent electronic state calculations revealed the presence of topological nodal lines in the semimetallic band structure, which attracted much attention owing to the superconductivity. However, experimental investigation remained limited because of the lack of single crystals. Here, we successfully prepared single crystals of NaAlSi by a Na-Ga flux method and characterized their superconducting and normal-state properties through electrical resistivity, magnetization, and heat capacity measurements. A sharp superconducting transition with a Tc of 6.8 K is clearly observed, and heat capacity data suggest an anisotropic superconducting gap. Surprisingly, despite the sp electron system, the normal state is governed by the electron correlations, which is indicated by a T2 resistivity and a Wilson ratio of 2.0. The origin of the electron correlation may be related to the orthogonal saddle-shaped Fermi surfaces derived from the Si px and py states, which intersect with the light Al s bands to form the nodal lines near the Fermi level. These results strongly suggest that the superconductivity of NaAlSi is not caused by a simple phonon mechanism but involves a certain unconventional aspect, although its relevance to the nodal lines is unclear.
We investigate systematically the bulk and surface electronic structure of the candidate nodal-line semimetal CaAgAs by angle resolved photoemission spectroscopy and density functional calculations. We observed a metallic, linear, non-$k_z$-dispersiv e surface band that coincides with the high-binding-energy part of the theoretical topological surface state, proving the topological nontriviality of the system. An overall downshift of the experimental Fermi level points to a rigid-band-like $p$-doping of the samples, due possibly to Ag vacancies in the as-grown crystals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا