ترغب بنشر مسار تعليمي؟ اضغط هنا

Tip-induced Superconductivity Coexisting with Preserved Topological Properties in Line-nodal Semimetal ZrSiS

241   0   0.0 ( 0 )
 نشر من قبل Goutam Sheet
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

ZrSiS was recently shown to be a new material with topologically non-trivial band structure which exhibits multiple Dirac nodes and a robust linear band dispersion up to an unusually high energy of 2,eV. Such a robust linear dispersion makes the topological properties of ZrSiS insensitive to perturbations like carrier doping or lattice distortion. Here we show that a novel superconducting phase with a remarkably high $T_c$ of 7.5,K can be induced in single crystals of ZrSiS by a non-superconducting metallic tip of Ag. From first-principles calculations we show that the observed superconducting phase might originate from dramatic enhancement of density of states due to the presence of a metallic tip on ZrSiS. Our calculations also show that the emerging tip-induced superconducting phase co-exists with the well preserved topological properties of ZrSiS.



قيم البحث

اقرأ أيضاً

NaAlSi is an sp electron superconductor crystallizing in a layered structure of the anti-PbFCl type with a relatively high transition temperature Tc of ~7 K. Recent electronic state calculations revealed the presence of topological nodal lines in the semimetallic band structure, which attracted much attention owing to the superconductivity. However, experimental investigation remained limited because of the lack of single crystals. Here, we successfully prepared single crystals of NaAlSi by a Na-Ga flux method and characterized their superconducting and normal-state properties through electrical resistivity, magnetization, and heat capacity measurements. A sharp superconducting transition with a Tc of 6.8 K is clearly observed, and heat capacity data suggest an anisotropic superconducting gap. Surprisingly, despite the sp electron system, the normal state is governed by the electron correlations, which is indicated by a T2 resistivity and a Wilson ratio of 2.0. The origin of the electron correlation may be related to the orthogonal saddle-shaped Fermi surfaces derived from the Si px and py states, which intersect with the light Al s bands to form the nodal lines near the Fermi level. These results strongly suggest that the superconductivity of NaAlSi is not caused by a simple phonon mechanism but involves a certain unconventional aspect, although its relevance to the nodal lines is unclear.
380 - E. J. Cheng , W. Xia , X. B. Shi 2019
Topological nodal-line semimetals (TNLSMs) are materials whose conduction and valence bands cross each other, meeting a topologically-protected closed loop rather than discrete points in the Brillouin zone (BZ). The anticipated properties for TNLSMs include drumhead-like nearly flat surface states, unique Landau energy levels, special collective modes, long-range Coulomb interactions, or the possibility of realizing high-temperature superconductivity. Recently, SrAs3 has been theoretically proposed and then experimentally confirmed to be a TNLSM. Here, we report high-pressure experiments on SrAs3, identifying a Lifshitz transition below 1 GPa and a superconducting transition accompanied by a structural phase transition above 20 GPa. A topological crystalline insulator (TCI) state is revealed by means of density functional theory (DFT) calculations on the emergent high-pressure phase. As the counterpart of topological insulators, TCIs possess metallic boundary states protected by crystal symmetry, rather than time reversal. In consideration of topological surface states (TSSs) and helical spin texture observed in the high-pressure state of SrAs3, the superconducting state may be induced in the surface states, and is most likely topologically nontrivial, making pressurized SrAs3 a strong candidate for topological superconductor.
Coexistence of topological bands and charge density wave (CDW) in topological materials has attracted immense attentions because of their fantastic properties, such as axionic-CDW, three-dimensional quantum Hall effect, etc. In this work, a nodal-lin e semimetal InxTaS2 characterized by CDW and superconductivity is successfully synthesized, whose structure and topological bands (two separated Wely rings) are similar to In0.58TaSe2. A 2 x 2 commensurate CDW is observed at low temperature in InxTaS2, identified by transport properties and STM measurements. Moreover, superconductivity emerges below 0.69 K, and the anisotropy ratio of upper critical field [Gamma = H||ab c2(0)=H||c c2(0)] is significantly enhanced compared to 2H-TaS2, which shares the same essential layer unit. According to the Lawrence-Doniach model, the enhanced Gamma may be explained by the reduced effective mass in kx-ky plane, where Weyl rings locate. Therefore, this type of layered topological systems may offer a platform to investigate highly anisotropic superconductivity and to understand the extremely large upper critical field in the bulk or in the two-dimensional limit.
ZrSiS has recently gained attention due to its unusual electronic properties: nearly perfect electron-hole compensation, large, anisotropic magneto-resistance, multiple Dirac nodes near the Fermi level, and an extremely large range of linear dispersi on of up to 2 eV. We have carried out a series of high pressure electrical resistivity measurements on single crystals of ZrSiS. Shubnikov-de Haas measurements show two distinct oscillation frequencies. For the smaller orbit, we observe a change in the phase of 0.5, which occurs between 0.16 - 0.5 GPa. This change in phase is accompanied by an abrupt decrease of the cross-sectional area of this Fermi surface. We attribute this change in phase to a possible topological quantum phase transition. The phase of the larger orbit exhibits a Berry phase of pi and remains roughly constant up to 2.3 GPa. Resistivity measurements to higher pressures show no evidence for pressure-induced superconductivity to at least 20 GPa.
Topological materials provide an exclusive platform to study the dynamics of relativistic particles in table-top experiments and offer the possibility of wide-scale technological applications. ZrSiS is a newly discovered topological nodal-line semime tal and has drawn enormous interests. In this report, we have investigated the lattice dynamics and electron-phonon interaction in single crystalline ZrSiS using Raman spectroscopy. Polarization and angle resolved measurements have been performed and the results have been analyzed using crystal symmetries and theoretically calculated atomic vibrational patterns along with phonon dispersion spectra. Wavelength and temperature dependent measurements show the complex interplay of electron and phonon degrees of freedom, resulting in resonant phonon and quasielastic electron scatterings through inter-band transitions. Our high-pressure Raman studies reveal vibrational anomalies, which were further investigated from the high-pressure synchrotron x-ray diffraction (HPXRD) spectra. From HPXRD, we have clearly identified pressure-induced structural transitions and coexistence of multiple phases, which also indicate possible electronic topological transitions in ZrSiS. The present study not only provides the fundamental information on the phonon subsystem, but also sheds some light in understanding the topological nodal-line phase in ZrSiS and other iso-structural systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا