ﻻ يوجد ملخص باللغة العربية
The self-consistent quantum-electrostatic (also known as Poisson-Schrodinger) problem is notoriously difficult in situations where the density of states varies rapidly with energy. At low temperatures, these fluctuations make the problem highly non-linear which renders iterative schemes deeply unstable. We present a stable algorithm that provides a solution to this problem with controlled accuracy. The technique is intrinsically convergent including in highly non-linear regimes. We illustrate our approach with (i) a calculation of the compressible and incompressible stripes in the integer quantum Hall regime and (ii) a calculation of the differential conductance of a quantum point contact geometry. Our technique provides a viable route for the predictive modeling of the transport properties of quantum nanoelectronics devices.
We investigate theoretically the behavior of the current oscillations in an electronic Mach-Zehnder interferometer (MZI) as a function of its source bias. Recently, The MZI interference visibility showed an unexplained lobe pattern behavior with a pe
While offering unprecedented resolution of atomic and electronic structure, Scanning Probe Microscopy techniques have found greater challenges in providing reliable electrostatic characterization at the same scale. In this work, we introduce Electros
High level of dissipation in normal metals makes challenging development of active and passive plasmonic devices. One possible solution to this problem is to use alternative materials. Graphene is a good candidate for plasmonics in near infrared (IR)
Quantum embedding approaches involve the self-consistent optimization of a local fragment of a strongly correlated system, entangled with the wider environment. The `energy-weighted density matrix embedding theory (EwDMET) was established recently as
In a series of recent papers anomalous Hall and Nernst effects have been theoretically discussed in the non-linear regime and have seen some early success in experiments. In this paper, by utilizing the role of Berry curvature dipole, we derive the f