ترغب بنشر مسار تعليمي؟ اضغط هنا

Fully Dynamic Single-Source Reachability in Practice: An Experimental Study

70   0   0.0 ( 0 )
 نشر من قبل Kathrin Hanauer
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Given a directed graph and a source vertex, the fully dynamic single-source reachability problem is to maintain the set of vertices that are reachable from the given vertex, subject to edge deletions and insertions. It is one of the most fundamental problems on graphs and appears directly or indirectly in many and varied applications. While there has been theoretical work on this problem, showing both linear conditional lower bounds for the fully dynamic problem and insertions-only and deletions-only upper bounds beating these conditional lower bounds, there has been no experimental study that compares the performance of fully dynamic reachability algorithms in practice. Previous experimental studies in this area concentrated only on the more general all-pairs reachability or transitive closure problem and did not use real-world dynamic graphs. In this paper, we bridge this gap by empirically studying an extensive set of algorithms for the single-source reachability problem in the fully dynamic setting. In particular, we design several fully dynamic variants of well-known approaches to obtain and maintain reachability information with respect to a distinguished source. Moreover, we extend the existing insertions-only or deletions-only upper bounds into fully dynamic algorithms. Even though the worst-case time per operation of all the fully dynamic algorithms we evaluate is at least linear in the number of edges in the graph (as is to be expected given the conditional lower bounds) we show in our extensive experimental evaluation that their performance differs greatly, both on generated as well as on real-world instances.



قيم البحث

اقرأ أيضاً

The fully dynamic transitive closure problem asks to maintain reachability information in a directed graph between arbitrary pairs of vertices, while the graph undergoes a sequence of edge insertions and deletions. The problem has been thoroughly inv estigated in theory and many specialized algorithms for solving it have been proposed in the last decades. In two large studies [Frigioni ea, 2001; Krommidas and Zaroliagis, 2008], a number of these algorithms have been evaluated experimentally against simple static algorithms for graph traversal, showing the competitiveness and even superiority of the simple algorithms in practice, except for very dense random graphs or very high ratios of queries. A major drawback of those studies is that only small and mostly randomly generated graphs are considered. In this paper, we engineer new algorithms to maintain all-pairs reachability information which are simple and space-efficient. Moreover, we perform an extensive experimental evaluation on both generated and real-world instances that are several orders of magnitude larger than those in the previous studies. Our results indicate that our new algorithms outperform all state-of-the-art algorithms on all types of input considerably in practice.
Designing dynamic graph algorithms against an adaptive adversary is a major goal in the field of dynamic graph algorithms. While a few such algorithms are known for spanning trees, matchings, and single-source shortest paths, very little was known fo r an important primitive like graph sparsifiers. The challenge is how to approximately preserve so much information about the graph (e.g., all-pairs distances and all cuts) without revealing the algorithms underlying randomness to the adaptive adversary. In this paper we present the first non-trivial efficient adaptive algorithms for maintaining spanners and cut sparisifers. These algorithms in turn imply improvements over existing algorithms for other problems. Our first algorithm maintains a polylog$(n)$-spanner of size $tilde O(n)$ in polylog$(n)$ amortized update time. The second algorithm maintains an $O(k)$-approximate cut sparsifier of size $tilde O(n)$ in $tilde O(n^{1/k})$ amortized update time, for any $kge1$, which is polylog$(n)$ time when $k=log(n)$. The third algorithm maintains a polylog$(n)$-approximate spectral sparsifier in polylog$(n)$ amortized update time. The amortized update time of both algorithms can be made worst-case by paying some sub-polynomial factors. Prior to our result, there were near-optimal algorithms against oblivious adversaries (e.g. Baswana et al. [TALG12] and Abraham et al. [FOCS16]), but the only non-trivial adaptive dynamic algorithm requires $O(n)$ amortized update time to maintain $3$- and $5$-spanner of size $O(n^{1+1/2})$ and $O(n^{1+1/3})$, respectively [Ausiello et al. ESA05]. Our results are based on two novel techniques. The first technique, is a generic black-box reduction that allows us to assume that the graph undergoes only edge deletions and, more importantly, remains an expander with almost-uniform degree. The second technique we call proactive resampling. [...]
149 - Aaron Bernstein 2017
In this paper we consider the decremental single-source shortest paths (SSSP) problem, where given a graph $G$ and a source node $s$ the goal is to maintain shortest distances between $s$ and all other nodes in $G$ under a sequence of online adversar ial edge deletions. In their seminal work, Even and Shiloach [JACM 1981] presented an exact solution to the problem in unweighted graphs with only $O(mn)$ total update time over all edge deletions. Their classic algorithm was the state of the art for the decremental SSSP problem for three decades, even when approximate shortest paths are allowed. A series of results showed how to improve upon $O(mn)$ if approximation is allowed, culminating in a recent breakthrough of Henzinger, Krinninger and Nanongkai [FOCS 14], who presented a $(1+epsilon)$-approximate algorithm for undirected weighted graphs whose total update time is near linear: $O(m^{1+o(1)}log(W))$, where $W$ is the ratio of the heaviest to the lightest edge weight in the graph. In this paper they posed as a major open problem the question of derandomizing their result. Until very recently, all known improvements over the Even-Shiloach algorithm were randomized and required the assumption of a non-adaptive adversary. In STOC 2016, Bernstein and Chechik showed the first emph{deterministic} algorithm to go beyond $O(mn)$ total update time: the algorithm is also $(1+epsilon)$-approximate, and has total update time $tilde{O}(n^2)$. In SODA 2017, the same authors presented an algorithm with total update time $tilde{O}(mn^{3/4})$. However, both algorithms are restricted to undirected, unweighted graphs. We present the emph{first} deterministic algorithm for emph{weighted} undirected graphs to go beyond the $O(mn)$ bound. The total update time is $tilde{O}(n^2 log(W))$.
In recent years, significant advances have been made in the design and analysis of fully dynamic algorithms. However, these theoretical results have received very little attention from the practical perspective. Few of the algorithms are implemented and tested on real datasets, and their practical potential is far from understood. Here, we present a quick reference guide to recent engineering and theory results in the area of fully dynamic graph algorithms.
We present a space- and time-efficient fully dynamic implementation de Bruijn graphs, which can also support fixed-length jumbled pattern matching.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا