ﻻ يوجد ملخص باللغة العربية
Designing dynamic graph algorithms against an adaptive adversary is a major goal in the field of dynamic graph algorithms. While a few such algorithms are known for spanning trees, matchings, and single-source shortest paths, very little was known for an important primitive like graph sparsifiers. The challenge is how to approximately preserve so much information about the graph (e.g., all-pairs distances and all cuts) without revealing the algorithms underlying randomness to the adaptive adversary. In this paper we present the first non-trivial efficient adaptive algorithms for maintaining spanners and cut sparisifers. These algorithms in turn imply improvements over existing algorithms for other problems. Our first algorithm maintains a polylog$(n)$-spanner of size $tilde O(n)$ in polylog$(n)$ amortized update time. The second algorithm maintains an $O(k)$-approximate cut sparsifier of size $tilde O(n)$ in $tilde O(n^{1/k})$ amortized update time, for any $kge1$, which is polylog$(n)$ time when $k=log(n)$. The third algorithm maintains a polylog$(n)$-approximate spectral sparsifier in polylog$(n)$ amortized update time. The amortized update time of both algorithms can be made worst-case by paying some sub-polynomial factors. Prior to our result, there were near-optimal algorithms against oblivious adversaries (e.g. Baswana et al. [TALG12] and Abraham et al. [FOCS16]), but the only non-trivial adaptive dynamic algorithm requires $O(n)$ amortized update time to maintain $3$- and $5$-spanner of size $O(n^{1+1/2})$ and $O(n^{1+1/3})$, respectively [Ausiello et al. ESA05]. Our results are based on two novel techniques. The first technique, is a generic black-box reduction that allows us to assume that the graph undergoes only edge deletions and, more importantly, remains an expander with almost-uniform degree. The second technique we call proactive resampling. [...]
We present a new dynamic matching sparsification scheme. From this scheme we derive a framework for dynamically rounding fractional matchings against emph{adaptive adversaries}. Plugging in known dynamic fractional matching algorithms into our framew
Given a dynamic digraph $G = (V,E)$ undergoing edge deletions and given $sin V$ and $epsilon>0$, we consider the problem of maintaining $(1+epsilon)$-approximate shortest path distances from $s$ to all vertices in $G$ over the sequence of deletions.
Given a directed graph $G = (V,E)$, undergoing an online sequence of edge deletions with $m$ edges in the initial version of $G$ and $n = |V|$, we consider the problem of maintaining all-pairs shortest paths (APSP) in $G$. Whilst this problem has b
In recent years, significant advances have been made in the design and analysis of fully dynamic algorithms. However, these theoretical results have received very little attention from the practical perspective. Few of the algorithms are implemented
Motivated by the study of matrix elimination orderings in combinatorial scientific computing, we utilize graph sketching and local sampling to give a data structure that provides access to approximate fill degrees of a matrix undergoing elimination i