ﻻ يوجد ملخص باللغة العربية
IoT devices are increasingly deployed in daily life. Many of these devices are, however, vulnerable due to insecure design, implementation, and configuration. As a result, many networks already have vulnerable IoT devices that are easy to compromise. This has led to a new category of malware specifically targeting IoT devices. However, existing intrusion detection techniques are not effective in detecting compromised IoT devices given the massive scale of the problem in terms of the number of different types of devices and manufacturers involved. In this paper, we present DIoT, an autonomous self-learning distributed system for detecting compromised IoT devices effectively. In contrast to prior work, DIoT uses a novel self-learning approach to classify devices into device types and build normal communication profiles for each of these that can subsequently be used to detect anomalous deviations in communication patterns. DIoT utilizes a federated learning approach for aggregating behavior profiles efficiently. To the best of our knowledge, it is the first system to employ a federated learning approach to anomaly-detection-based intrusion detection. Consequently, DIoT can cope with emerging new and unknown attacks. We systematically and extensively evaluated more than 30 off-the-shelf IoT devices over a long term and show that DIoT is highly effective (95.6% detection rate) and fast (~257 ms) at detecting devices compromised by, for instance, the infamous Mirai malware. DIoT reported no false alarms when evaluated in a real-world smart home deployment setting.
This work investigates the possibilities enabled by federated learning concerning IoT malware detection and studies security issues inherent to this new learning paradigm. In this context, a framework that uses federated learning to detect malware af
Internet of Things (IoT) devices have become ubiquitous and are spread across many application domains including the industry, transportation, healthcare, and households. However, the proliferation of the IoT devices has raised the concerns about the
Critical role of Internet of Things (IoT) in various domains like smart city, healthcare, supply chain and transportation has made them the target of malicious attacks. Past works in this area focused on centralized Intrusion Detection System (IDS),
Due to their rapid growth and deployment, the Internet of things (IoT) have become a central aspect of our daily lives. Unfortunately, IoT devices tend to have many vulnerabilities which can be exploited by an attacker. Unsupervised techniques, such
The rapid development of the Internet and smart devices trigger surge in network traffic making its infrastructure more complex and heterogeneous. The predominated usage of mobile phones, wearable devices and autonomous vehicles are examples of distr