ﻻ يوجد ملخص باللغة العربية
Enabling robots to understand instructions provided via spoken natural language would facilitate interaction between robots and people in a variety of settings in homes and workplaces. However, natural language instructions are often missing information that would be obvious to a human based on environmental context and common sense, and hence does not need to be explicitly stated. In this paper, we introduce Language-Model-based Commonsense Reasoning (LMCR), a new method which enables a robot to listen to a natural language instruction from a human, observe the environment around it, and automatically fill in information missing from the instruction using environmental context and a new commonsense reasoning approach. Our approach first converts an instruction provided as unconstrained natural language into a form that a robot can understand by parsing it into verb frames. Our approach then fills in missing information in the instruction by observing objects in its vicinity and leveraging commonsense reasoning. To learn commonsense reasoning automatically, our approach distills knowledge from large unstructured textual corpora by training a language model. Our results show the feasibility of a robot learning commonsense knowledge automatically from web-based textual corpora, and the power of learned commonsense reasoning models in enabling a robot to autonomously perform tasks based on incomplete natural language instructions.
Natural language object retrieval is a highly useful yet challenging task for robots in human-centric environments. Previous work has primarily focused on commands specifying the desired objects type such as scissors and/or visual attributes such as
Natural language provides an accessible and expressive interface to specify long-term tasks for robotic agents. However, non-experts are likely to specify such tasks with high-level instructions, which abstract over specific robot actions through sev
Humans (e.g., crowdworkers) have a remarkable ability in solving different tasks, by simply reading textual instructions that define them and looking at a few examples. NLP models built with the conventional paradigm, however, often struggle with gen
This paper proposes a novel approach to learn commonsense from images, instead of limited raw texts or costly constructed knowledge bases, for the commonsense reasoning problem in NLP. Our motivation comes from the fact that an image is worth a thous
Is it possible to use natural language to intervene in a models behavior and alter its prediction in a desired way? We investigate the effectiveness of natural language interventions for reading-comprehension systems, studying this in the context of