ترغب بنشر مسار تعليمي؟ اضغط هنا

Ethical-Advice Taker: Do Language Models Understand Natural Language Interventions?

342   0   0.0 ( 0 )
 نشر من قبل Jieyu Zhao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Is it possible to use natural language to intervene in a models behavior and alter its prediction in a desired way? We investigate the effectiveness of natural language interventions for reading-comprehension systems, studying this in the context of social stereotypes. Specifically, we propose a new language understanding task, Linguistic Ethical Interventions (LEI), where the goal is to amend a question-answering (QA) models unethical behavior by communicating context-specific principles of ethics and equity to it. To this end, we build upon recent methods for quantifying a systems social stereotypes, augmenting them with different kinds of ethical interventions and the desired model behavior under such interventions. Our zero-shot evaluation finds that even todays powerful neural language models are extremely poor ethical-advice takers, that is, they respond surprisingly little to ethical interventions even though these interventions are stated as simple sentences. Few-shot learning improves model behavior but remains far from the desired outcome, especially when evaluated for various types of generalization. Our new task thus poses a novel language understanding challenge for the community.



قيم البحث

اقرأ أيضاً

Tracking entities throughout a procedure described in a text is challenging due to the dynamic nature of the world described in the process. Firstly, we propose to formulate this task as a question answering problem. This enables us to use pre-traine d transformer-based language models on other QA benchmarks by adapting those to the procedural text understanding. Secondly, since the transformer-based language models cannot encode the flow of events by themselves, we propose a Time-Stamped Language Model~(TSLM model) to encode event information in LMs architecture by introducing the timestamp encoding. Our model evaluated on the Propara dataset shows improvements on the published state-of-the-art results with a $3.1%$ increase in F1 score. Moreover, our model yields better results on the location prediction task on the NPN-Cooking dataset. This result indicates that our approach is effective for procedural text understanding in general.
Inspired by evidence that pretrained language models (LMs) encode commonsense knowledge, recent work has applied LMs to automatically populate commonsense knowledge graphs (CKGs). However, there is a lack of understanding on their generalization to m ultiple CKGs, unseen relations, and novel entities. This paper analyzes the ability of LMs to perform generalizable commonsense inference, in terms of knowledge capacity, transferability, and induction. Our experiments with these three aspects show that: (1) LMs can adapt to different schemas defined by multiple CKGs but fail to reuse the knowledge to generalize to new relations. (2) Adapted LMs generalize well to unseen subjects, but less so on novel objects. Future work should investigate how to improve the transferability and induction of commonsense mining from LMs.
386 - Mariya Toneva , Leila Wehbe 2019
Neural networks models for NLP are typically implemented without the explicit encoding of language rules and yet they are able to break one performance record after another. This has generated a lot of research interest in interpreting the representa tions learned by these networks. We propose here a novel interpretation approach that relies on the only processing system we have that does understand language: the human brain. We use brain imaging recordings of subjects reading complex natural text to interpret word and sequence embeddings from 4 recent NLP models - ELMo, USE, BERT and Transformer-XL. We study how their representations differ across layer depth, context length, and attention type. Our results reveal differences in the context-related representations across these models. Further, in the transformer models, we find an interaction between layer depth and context length, and between layer depth and attention type. We finally hypothesize that altering BERT to better align with brain recordings would enable it to also better understand language. Probing the altered BERT using syntactic NLP tasks reveals that the model with increased brain-alignment outperforms the original model. Cognitive neuroscientists have already begun using NLP networks to study the brain, and this work closes the loop to allow the interaction between NLP and cognitive neuroscience to be a true cross-pollination.
Recent advances in reinforcement learning have shown its potential to tackle complex real-life tasks. However, as the dimensionality of the task increases, reinforcement learning methods tend to struggle. To overcome this, we explore methods for repr esenting the semantic information embedded in the state. While previous methods focused on information in its raw form (e.g., raw visual input), we propose to represent the state using natural language. Language can represent complex scenarios and concepts, making it a favorable candidate for representation. Empirical evidence, within the domain of ViZDoom, suggests that natural language based agents are more robust, converge faster and perform better than vision based agents, showing the benefit of using natural language representations for reinforcement learning.
Emotion analysis has been attracting researchers attention. Most previous works in the artificial intelligence field focus on recognizing emotion rather than mining the reason why emotions are not or wrongly recognized. Correlation among emotions con tributes to the failure of emotion recognition. In this paper, we try to fill the gap between emotion recognition and emotion correlation mining through natural language text from web news. Correlation among emotions, expressed as the confusion and evolution of emotion, is primarily caused by human emotion cognitive bias. To mine emotion correlation from emotion recognition through text, three kinds of features and two deep neural network models are presented. The emotion confusion law is extracted through orthogonal basis. The emotion evolution law is evaluated from three perspectives, one-step shift, limited-step shifts, and shortest path transfer. The method is validated using three datasets-the titles, the bodies, and the comments of news articles, covering both objective and subjective texts in varying lengths (long and short). The experimental results show that, in subjective comments, emotions are easily mistaken as anger. Comments tend to arouse emotion circulations of love-anger and sadness-anger. In objective news, it is easy to recognize text emotion as love and cause fear-joy circulation. That means, journalists may try to attract attention using fear and joy words but arouse the emotion love instead; After news release, netizens generate emotional comments to express their intense emotions, i.e., anger, sadness, and love. These findings could provide insights for applications regarding affective interaction such as network public sentiment, social media communication, and human-computer interaction.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا