ترغب بنشر مسار تعليمي؟ اضغط هنا

Authenticated Key-Value Stores with Hardware Enclaves

88   0   0.0 ( 0 )
 نشر من قبل Kai Li
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Authenticated data storage on an untrusted platform is an important computing paradigm for cloud applications ranging from big-data outsourcing, to cryptocurrency and certificate transparency log. These modern applications increasingly feature update-intensive workloads, whereas existing authenticated data structures (ADSs) designed with in-place updates are inefficient to handle such workloads. In this paper, we address this issue and propose a novel authenticated log-structured merge tree (eLSM) based key-value store by leveraging Intel SGX enclaves. We present a system design that runs the code of eLSM store inside enclave. To circumvent the limited enclave memory (128 MB with the latest Intel CPUs), we propose to place the memory buffer of the eLSM store outside the enclave and protect the buffer using a new authenticated data structure by digesting individual LSM-tree levels. We design protocols to support query authentication in data integrity, completeness (under range queries), and freshness. The proof in our protocol is made small by including only the Merkle proofs at selective levels. We implement eLSM on top of Google LevelDB and Facebook RocksDB with minimal code change and performance interference. We evaluate the performance of eLSM under the YCSB workload benchmark and show a performance advantage of up to 4.5X speedup.



قيم البحث

اقرأ أيضاً

80 - Kai Li , Yuzhe Tang , Jiaqi Chen 2019
Feeding external data to a blockchain, a.k.a. data feed, is an essential task to enable blockchain interoperability and support emerging cross-domain applications, notably stablecoins. Given the data-intensive feeds in real life (e.g., high-frequency price updates) and the high cost in using blockchain, namely Gas, it is imperative to reduce the Gas cost of data feeds. Motivated by the constant-changing workloads in finance and other applications, this work focuses on designing a dynamic, workload-aware approach for cost effectiveness in Gas. This design space is understudied in the existing blockchain research which has so far focused on static data placement. This work presents GRuB, a cost-effective data feed that dynamically replicates data between the blockchain and an off-chain cloud storage. GRuBs data replication is workload-adaptive by monitoring the current workload and making online decisions w.r.t. data replication. A series of online algorithms are proposed that achieve the bounded worst-case cost in blockchains Gas. GRuB runs the decision-making components on the untrusted cloud off-chain for lower Gas costs, and employs a security protocol to authenticate the data transferred between the blockchain and cloud. The overall GRuB system can autonomously achieve low Gas costs with changing workloads. We built a GRuB prototype functional with Ethereum and Google LevelDB, and supported real applications in stablecoins. Under real workloads collected from the Ethereum contract-call history and mixed workloads of YCSB, we systematically evaluate GRuBs cost which shows a saving of Gas by 10% ~ 74%, with comparison to the baselines of static data-placement.
Privacy preservation is a big concern for various sectors. To protect individual user data, one emerging technology is differential privacy. However, it still has limitations for datasets with frequent queries, such as the fast accumulation of privac y cost. To tackle this limitation, this paper explores the integration of a secured decentralised ledger, blockchain. Blockchain will be able to keep track of all noisy responses generated with differential privacy algorithm and allow for certain queries to reuse old responses. In this paper, a demo of a proposed blockchain-based privacy management system is designed as an interactive decentralised web application (DApp). The demo created illustrates that leveraging on blockchain will allow the total privacy cost accumulated to decrease significantly.
Contemporary IoT environments, such as smart buildings, require end-users to trust data-capturing rules published by the systems. There are several reasons why such a trust is misplaced -- IoT systems may violate the rules deliberately or IoT devices may transfer user data to a malicious third-party due to cyberattacks, leading to the loss of individuals privacy or service integrity. To address such concerns, we propose IoT Notary, a framework to ensure trust in IoT systems and applications. IoT Notary provides secure log sealing on live sensor data to produce a verifiable `proof-of-integrity, based on which a verifier can attest that captured sensor data adheres to the published data-capturing rules. IoT Notary is an integral part of TIPPERS, a smart space system that has been deployed at the University of California Irvine to provide various real-time location-based services on the campus. We present extensive experiments over realtime WiFi connectivity data to evaluate IoT Notary, and the results show that IoT Notary imposes nominal overheads. The secure logs only take 21% more storage, while users can verify their one days data in less than two seconds even using a resource-limited device.
A popular run-time attack technique is to compromise the control-flow integrity of a program by modifying function return addresses on the stack. So far, shadow stacks have proven to be essential for comprehensively preventing return address manipula tion. Shadow stacks record return addresses in integrity-protected memory secured with hardware-assistance or software access control. Software shadow stacks incur high overheads or trade off security for efficiency. Hardware-assisted shadow stacks are efficient and secure, but require the deployment of special-purpose hardware. We present authenticated call stack (ACS), an approach that uses chained message authentication codes (MACs). Our prototype, PACStack, uses the ARM general purpose hardware mechanism for pointer authentication (PA) to implement ACS. Via a rigorous security analysis, we show that PACStack achieves security comparable to hardware-assisted shadow stacks without requiring dedicated hardware. We demonstrate that PACStacks performance overhead is small (~3%).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا