ﻻ يوجد ملخص باللغة العربية
We investigate the anisotropic magnetoresistance (AMR) of ferromagnetic CoNi microhelices fabricated by electrodeposition and laser printing. We find that the geometry of the three-dimensional winding determines a characteristic angular and field-dependence of the AMR due to the competition between helical shape anisotropy and external magnetic field. Moreover, we show that there is an additional contribution to the AMR that scales proportionally to the applied current and depends on the helix chirality. We attribute this contribution to the self magnetic field induced by the current, which modifies the orientation of the magnetization relative to the current flow along the helix. Our results underline the interest of three-dimensional curved geometries to tune the AMR and realize tubular magnetoresistive devices.
We present ab initio calculations of the evolution of anisotropic magnetoresistance (AMR) in Ni nanocontacts from the ballistic to the tunnel regime. We find an extraordinary enhancement of AMR, compared to bulk, in two scenarios. In systems without
We report point-contact measurements of anisotropic magnetoresistance (AMR) in a single crystal of antiferromagnetic (AFM) Mott insulator Sr2IrO4. The point-contact technique is used here as a local probe of magnetotransport properties on the nanosca
The effects of the spin-orbit interaction on the tunneling magnetoresistance of ferromagnet/semiconductor/normal metal tunnel junctions are investigated. Analytical expressions for the tunneling anisotropic magnetoresistance (TAMR) are derived within
Based on general symmetry considerations we investigate how the dependence of the tunneling anisotropic magnetoresistance (TAMR) on the magnetization direction is determined by the specific form of the spin-orbit coupling field. By extending a phenom
A quasiclassical theory of giant magnetoresistance in nanoscale point contacts between different ferromagnetic metals is developed. The contacts were sorted by three types of mutual positions of the conduction spin-subband bottoms which are shifted o